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Chapter 1 

The  Linearized Muffin-Tin Orbitals M e t h o d  

1.1 In troduct ion  

The theory of electronic structure has, for many years, been of great significance 

for understanding of the physical and chemical properties of solid state materials. 

Electrons at the microscopic level to a great extent govern the behavior of these 

materials and a good description may be obtained in terms of the stationary states of 

the electronic system. One reason for this state of affairs is that  the valence electrons 

are light particles whose motion immediately follow the much heavier ion-cores. In 

theoretical terms this means that the quantum mechanics of ion-cores and electrons 

may be treated separately . This procedure is known as the Born-Oppenheimer 

approximation. According to this one may first solve for the electronic structure and 

at a latter stage use the energy of the electronic ground state obtained as a function 

of nuclear positions as a potential energy for the motion of nuclei. The electronic 

structure problem at this stage consists of finding the eigenstates and eigenvalues 

of an infinite number of interacting fermions. Further approximations are thus 

needed. The one-electron approximation treats each electron as an independent 

particle moving in the fields of the nuclei and the other electrons. One thus has 

to solve the one electron SchrSdinger like equation 'referred to as the Kohn-Sham 

equat ion):  

( - V  2 + V)Cj  = EjCj (1-1) 

We shall always use (unless specifically states) atomic units in which lengths are 
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given in units of bohrs and energies in Rydbergs. V is the effective one electron 

potential and as stated before, consists of the electrostatic field from nuclei and 

the charge clouds of all other electrons, together with corrections for exchange and 

correlation. 

A rigorous as well as convenient formulation for metals is provided by the density 

functional formalism of Hohenberg and Kohn (1964) and Kohn and Sham(1965). 

The local density approximation (LDA) like the Xo~ method of Slater leads to 

an effective one electron potential which again is a function of electron density, 
=  .occ ,..,j ICj(r')l 2. Since the density in turn depends on the solutions of the effec- 

tive one electron Schr6dinger equation we are led to perform the electron structure 

calculation in a self-consistent manner. 

In course of the last decade or so the LMTO developed by Andersen and cowork- 

ers (Andersen et al (1985, 1986, 1987, Skriver (1984)) has emerged as a very conve- 

nient and accurate scheme for studying the electronic structure of solids within the 

density functional formalism. An interesting review is available in the monograph 

Electronic Structure of Alloys, Surfaces and Clusters (Mookerjee and Sarma (2003)). 

The LMTO is physically transparent and computationally convenient and indeed 

possesses a number of very attractive features : 

Firstly, the method is cast in the form of a standard algebraic eigenvalue problem 

and therefore has the speed required in a self-consistent calculation which often 

has to run through a number of cycles. 

Secondly like all other linear methods such as the linearized augmented plane wave 

method (LAPW) or the linear augmented spherical wave method (LASW) it is 

an approximate method but it has the required accuracy over a chosen energy 

window. 

Thirdly, it employs the same type of basis functions for all elements in the periodic 

table thus leading to a conceptually consistent description of physical trends 

throughout the periodic table. 

Fourthly, as indicated earlier, the method is physically transparent and can be used 

in several levels of approximations. 
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In this chapter we shall briefly describe the formalism behind the LMTO. We 

shall discuss the major approximations and also the means to go beyond them and 

present some applications. 

Because of its versatility the LMTO method may be applied to problems rang- 

ing from complicated self-consistent calculations in crystals with many atoms per 

unit cell to the construction of simple analytical models of solid state problems. 

Tile method has also been extended to treat impurities in crystals and for surfaces 

(Lambrecht et al (1983)) with Green function techniques which may be used both 

metal and semiconductor hosts. For disordered alloys, Kudrnovsk:~ et al (1987, 

1990) have developed a single site coherent potential approximation (CPA) within 

the LMTO Self-consistent Green function calculations for extended defects, as well 

as, self-consistent recursion calculations for liquids and amorphous materials have 

also been performed utilizing the LMTO formalism. The method moreover can be 

extended to provide, the full potential, non-spheridized electron density required for 

a speedy and accurate evaluation of total energy and force calculations. (Andersen 

et al (1985)) 

We have divided the chapter in three sections. In section 1.2 we shall give a 

schematic description of the LMTO method and introduce the necessary physical 

quantities. In section 1.3 we shall give a detailed discussion of the formalism with 

in depth discussions of relevant physical quantities. In section 1.4 we shall discuss 

some extensions of the LMTO formalism and some notable applications. 

1.2 Schemat ic  Descript ion of the LMTO M e t h o d  

The objective of the method is firstly to solve the SchrSdinger's equation 

[ - v  2 + = EjCj(  (1-2) 

of the one electron problem. The potential V(~ is characteristic of an infinite 

periodic solid and is often approximated by a collection of muffin tin wells centered 

at the lattice points R. Thus 

V(~  = ~ VMT(~R) + Vo (1-3) 
R 
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Here r'R = r'--/~ and VMT(~R) iS spherically symmetric about /~  in a sphere of radius 

S and zero outside. V0 is the flat potential in the interstitial region. 

Secondly one has to construct the charge density as, 
o c c  

= Z :  2 (1-4) 
J 

and subsequently use it to find the potential V(~  for the next self-consistency iter- 

ation by solving the Poisson equation for the Hartree part and by using one of the 

standard expression for the exchange-correlation part. We have used both the von- 

Barth-Hedin (yon Barth and Hedin (1972)) and the Langreth-Mehl (Langreth and 

Mehl (1983)) exchange-correlations. After the self-consistency has been achieved for 

the potential one may evaluate with its help various quantities of physical interest 

such as the total energy of the electrons and the nuclei in the Born-Oppenheimer ap- 

proximation, the pressure, the stress etc. The one electron states that  are significant 

for physical and chemical properties range from the energy where an electron can 

tunnel from one atom to the next up to the Fermi level. The relevant energy range 

thus extends approximately half a rydberg on either side of the potential energy 

maximum and the latter about a rydberg below the Fermi level. 

We may classify the older one electron methods according to whether one seeks 

wave functions as an expansion in some set of fixed basis functions, like plane waves, 

atomic orbitals,  Gaussian orbitals as in the LCAO, plane waves and Gaussian orbital 

pseudopotentials methods etc. or whether one expands the wave functions in the set 

of energy and potential dependent partial waves as is done in Wigner -Seitz cellular 

method, Korringa-Kohn-Rostoker method, and the augmented plane wave method 

(APW). 

In the former methods (1-2) is solved by expanding the wave functions approxi- 

mately as, 

Rn ,L 

where {XRn,L;j} is the energy independent basis set . The coefficients URn,L;j and 

the one electron energies Ej's  are obtained with help of Rayleigh-Reitz variational 

principle as the eigenvalues and eigenvectors of the algebraic eigenvalue problem 

( H -  EjO) ~j = 0  (1-6) 
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From a computational standpoint the procedure is highly convenient and is employed 

in the LMTO method with the Hamiltonian matrix 

= ( -V  + V)IXRo,L> (1-7) 

and the overlap matrix 

O~.~,,L,;R,,,,~ = <~R'L'IX,~,,~,) (1-8) 

For crystals the above basis functions can be transformed into Bloch functions 

XR,,L(/~, ~ = ]~ XR~L(+ ~- R -  7~) exp(i/~T) (1-9) 

so that  for each Bloch vector the matrix obtained is of convenient size . In (1-9) 

the vec tor /~ ,  runs over the atoms in the primitive cell only, 2 ~ are the translational 

vectors of the lattice, and the Bloch function is normalized to unity in the primitive 

cell. 

The essential disadvantage of the fixed basis methods is that  these basis sets 

must be large in order to be reasonably complete. Atomic orbitals or Gaussian sets 

must include several radial functions per atom and angular momentum component. 

For plane waves exceedingly large basis sets are needed for materials having other 

than broad bands. 

In the partial wave methods, since the muffin tin potential is considered to be 

spherically symmetric about the atomic sites in the muffin tins, the Scr5dinger 

equation is separable in radial and angular parts. The SchrSdinger equation may be 

solved exactly in terms of partial wave expansions, 

RL 
(1-10) 

where ~)int,j is the interstitial part of the wave function. 

The radial part of the partial wave CRL(e, ~YLM(~) for the MT well a t /~  may be 

obtained by numerically integrating the corresponding radial SchrSdinger equation. 

The wave function in the interstitial region may be obtained by a plane wave 

expansion or by an analytical continuation of the partial wave expansions from a 

near site. In this work we shall frequently assume that  , that  the partial wave 
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vanishes outside its own sphere and the interstitial function vanishes outside the 

interstitial region i. e. inside the spheres. The partial waves are functions of energy 

variable E and one electron energies are those Ej for which coefficients cj can be 

found such that the partial wave expansions from various spheres join continuously 

and differentiably together. The way this matching condition is formulated differs 

algebraically from one method to another, but in general the result is a set of linear 

homogeneous equations 

M ( E ) c j = O  (1-.11) 

having a secular matrix M(E).  This matrix in contrast to the ( H - O E )  matrix of the 

earlier method has a complicated non-linear energy dependence,and the procedure 

for determining the one electron energies and the corresponding coefficients cj is by 

first tracing a root Ej of M(E) and then solving the linear homogeneous equations 

by substituting E = Ej . Even for moderately sized matrices this requires an 

order of magnitude more computation than the eigenvalue method. The partial 

wave methods have a number of positive points : the solution provided by them 

for the MT potential is highly accurate and for close-packed, high point symmetry 

structures they are in general more accurate than the corresponding fixed basis 

method. The partial waves apply equally well to any atom in the periodic table. 

The LMTO method incorporates the desirable features of both the fixed basis 

and partial wave methods. The following simple discussion, provided by Andersen 

et al (Andersen et al (1985)), will make the methodology transparent. In the next 

section we shall give a more rigorous and detailed discussion. 

We shall consider a simple model of bonding in a diatomic molecule to discuss 

the question of incorporation of energy dependent partial waves in an energy inde- 

pendent basis set. We shall employ only one energy independent orbital XL(~. 

In an LCAO type description the bonding and anti bonding states are approxi- 

mately expressed as 

r  (r--*) ,-~ X~,(~ --t- (-1)~X~ " - /~ )  (1-12) 

where the meaning of the superscript a will be clarified soon,and their energies E -- 

EA or EB may be estimated from (1-6). Inside atomic spheres, the exact states can 
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be expressed by partial wave expansions 

qY A/B(~ = E r (F, EA/B) h~ (1-13) 
L 

where the subscripts indicate we have included the the energy dependence of the 

expansion coefficients h~ arising from the choice of the orbitals in the normalization 

of the partial waves. 

The function XL should be augmented by eL(#', EB) and we see that if we aug- 

ment the tail XL(~--/~) by 1/2(--1)~'~,L,[r EB)--r EA)]YL(~)h~, and the 

head XL(~ by 1/2 [r EB) + r EA)] we may approximately obtain (1-13) from 

(1-12). In a solid the states of lowest and highest energies are EB and EA respectively 

and with predominant 1 character correspond to bonding and anti-bonding between 

most of the nearest neighbours. In addition, a band of states between EB and EA 

exists arising from all possible combinations of bonding and anti-bonding between 

nearest neighbours throughout the crystal with B~ and A~ being the bottom and 

top of the e-th band. Now the entire range of energy dependence has to be supplied 

by the tails of X~(~'-/~) from other sites. (We now understand the meaning of the 

superscript a upon X ). The tail functions are therefore augmented by the energy 

derivative functions 

eL(Z~,r) = [Or ~ (1-14) 

The heads are similarly augmented by an appropriate linear combination of r (E~, r) 

and eL(E~, r) . The augmented orbital thus takes the form 

" o = XRL(r~R) + r + ~ ~ r ' 
Rl L I 

(1-15) 

where r and eRL(r~R) are defined to be zero outside a chosen augmentation 

sphere about the site /~ . Moreover X i is the interstitial part of the augmented 

orbital and is defined to be zero inside all augmentation spheres, and the original 

approximate orbital in the interstitial region between the spheres. The normalization 

of r and the expansion coefficients are so chosen that the augmented orbitals are 

continuous and once differentiable at the spheres. We shall show in the next section 

that both r and q~ are orthogonal to the core states and phi-phi-dot augmentation 
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thus can be used to orthogonalize the orbitals (Andersen (1977), Skriver (1984)) to 

the core states. 

The augmented orbitals may be used as basis functions in a variational calcula- 

tion. For closed-packed systems the potential is nearly spherically symmetric for a 

large volume around each atom and one may thus choose the augmentation spheres 

as large as possible either as touching muffin-tin spheres or as slightly overlapping, 

space-filling Wigner-Seitz spheres. 

For such large augmentation spheres the radial degree of freedom is sufficiently 

described by the r162  augmentation only i.e. only one orbital per ~m value and 

thus a minimal basis set is obtained in this manner. The Taylor series of the radial 

function truncated after the first two terms 

r r) ~ r r) + r r ) ( E -  E~) (1-16) 

can describe fairly well the change of radial wave function throughout the atomic 

sphere (r _< s) from the bonding to the anti-bonding levels. 

Further since the r - $ is used in a variational scheme, the error of the radial 

wave function which is of second order in (E - Eu) gives rise to errors in fourth 

order in (E - E,) in the energy bands. We thus see that  to set up the linear muffin 

tin orbital method one starts with the muffin-tin orbitals which are solutions of the 

Helmholtz equation 

(V2 + ~2)r = 0 (I-17) 

as the envelope set. Each linear method use a characteristic envelope set. The plane 

waves give rise to the LAPW method, the Slater type orbitals to the LSTO method. 

The chosen envelope set should be reasonably complete in the interstitial region. 

After a set is chosen each basis function is then expanded in spherical harmonics 

about all atomic sites .~ and each component is continuously and differentiably 

augmented inside spheres Of chosen radii s•. In the above we have given a schematic 

description of the whole method. In the next section we shall discuss in detail how 

the methodology is implemented. 
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1.3 Deta i l ed  Formulat ion of the L M T O  

In this section we shall give a more elaborate description of r q~ functions, the enve- 

lope functions, the potential parameters and the various functions that  arise in the 

LMTO framework. For convenience we shall divide the section in four subsections. 

We shall introduce mathematical expressions whenever necessary. 

1.3.1 The radial wave functions and the Potential function 

We shall first study one electron states viz. r r in a single sphere,their logarithmic 

derivatives Dz(E) at the sphere boundary and introduce the potential functions 

PL(E). 

As indicated before the one electron wave functions inside a muffin tin sphere 

are the solutions of the radial Schr5dinger equation 

(H - E) ]r : 0 (1-18) 

Let us define a radial function normalized to unity in the sphere 

2 E CL(E,r)--  < r  -1/2r (1-19) 

where the normalization integral is 

2 f * E <r -- ./ r , r)r r)dF 

= f o  2 E  

fo ~ 2 E ----- r  ,r)r2dr (1-20) 

In LMTO attention is focused upon energy range centered around some energy 

E~ which we are free to choose for the problem at hand. Thus for each angular 

momentum component g we choose an energy E~ and use the energy independent 

basis set formed by normalized radial wave function 

r  - r  r) 

and its energy derivative, 

(1-21) 

= (1 -22 )  
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The corresponding logarithmic derivatives at the sphere boundaries (r = s) are 

/ 
D.~ = s r162 = ~ % ~ ( s ) / r  

D~, = sr162 ) (1-23) 

where dash(/) indicates spatial derivative. By (1-19),the normalization integral in 

tile sphere is unity i, e. 

(r162 = 1 (1-24) 

One can obtain by successive differentiation 

<r162 = 0  (1-25) 

and also 

<&,2> = -<r (1-26) 
From (1-18) we obtain the u-th energy derivative of the partial wave Cu(s) and 

the corresponding logarithmic derivative D{r and their integral (r162 in the 

sphere. 

Differentiating the SchrSdinger equation (1-18)successively with respect to en- 

ergy one obtains 

(H - E.)1r -- u['r (1-27) 

From Green's second identity we get, 

(r - EIr = fL<, [r - r162169 d~' 

~=~ r_,,..,, 0 r  
r  (r-)~-~r ] s2df~ 

: (D2-  D1) sCt(s)r (1-28) 

Here t/) 1 (T -'~) and r are arbitrary functions of the form r with the same 

1,m and radial logarithmic derivatives D1, D2 respectively . O/On means differenti- 

ation with respect to the normal to the surface of the sphere and also in the first 

step we have inserted the Hamiltonian H = - V  2 + V(r) and used 

(~l]m- V(r)[~2)= (~I[E- V(F)[~I) 
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If we set r = r r = r  we obtain from (1-28) 

< r  E . I r  < r  E . I r  

= [D~,- D{r162162 

Also from (1-27)we obtain the result, 

u<r162 -1) = ( r  E.1r 
= [D~,- D{r sr162 

By putting u = 1,we get 

i. e, 

11 

(1-29) 

(1-30) 

�9 - 1  

D . -  D~ = [sr162 (1-31) 

Now we shall prove that  Cu(r) is orthogonal to the core states Cn defined by 

D{r = D~ with n :/= v 

r < <  r 

r and r are orthogonal and thus by using, 

(142) 

0 = (r162 = (Chill - E~Ir 

Interchanging the functions in the last integral and also from (1-29) we obtain, 

(r m.lr : <r E.Ir ) 

+ [D~ - D~] sr162 

o = (6.JH- E.J4.> + [D~- D~] s4,~(s)6,~(s) 

= (E~ - E.)(6.Jr + 4,~(s)/r 

utilizing also (1-31). From the last of (1-32) we have the second term on the right 

hand side approximately zero ,and hence we obtain the desired result 

(6,Ir -- 0 f o r  ~ # ~ (1-33) 
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Any linear combination of r  and r  is thus orthogonal to the core states and 

augmentation of the muffin tin orbital by r  - r functions is a suitable way 

of orthogonalization to the core states. Also as mentioned at the end of last section 

by augmenting tails with hRc,n'L,r at the neighbouring sites they are also made 

orthogonal to the core states of these neighbouring atoms also. 

To define r q~ , one may choose the following relation with r  r  

r = [1 + ( E -  E~)O~RI]r 

and therefore 

also 

r r) = $~(r)  + r (1-34) 

r -= r 

The constant o~l is to be so defined such that the linear combination of r functions 

in (1-15)) in previous section matches continuously and differentially to the tail of 

XR,~,(r~) 
We now introduce the potential functions which is very important for our subse- 

quent work. The potential function for energy E and angular momentum 1 is defined 

by 
D,(E) + l + 1 (1-35) 

Pt(E) = 2 ( 2 / + 1 )  D ~ ( E ) - I  

The log-derivative DI(E) is a monotonically increasing function of energy except at 

its singularities. The potential function is therefore an increasing function of energy. 

For each 1,both the functions consist of periods in energy(Skriver,1984;Andersen 

1977) labelled by the principal quantum number and separated by energy Vnl defined 

to be those for which 

DL(V.L) = I (1-36) 

Also within each period we further define three parameters 

Dl(Bnl) -" 0 

D~(Cn~) = - l -  1 

DL ( Anl ) -- -oo  
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The energies V~I, BI, CI, At represent the square well pseudo-potential, the bot- 

tom, the centre and the top respectively of the ne-th energy band. 

According to the Wigner-Seitz rule a e-band is formed in the energy range where 

the log-derivative is negative i.e. from DI(Bnl) = 0 to DI(A~I) = -oo. Now 

l + l  
PI(BI) -- l x2(21+1)  

and 
PI(AL) = 2(2l + 1) (DI + l + 1) = 2(2l + 1) 

' D l  - l 

Thus from Wigner-Seitz rule the band is formed in terms of potential function in 

the range, 

( 2 1 + t )  ( I + I ) < P I < 2 ( 2 I + I ) I  (1-37) 

and has hence a width on the P-scale of 2(2l + 1)2/l. We further observe 

Pt(CI) = 0  (1-38) 

We shall again discuss the potential function in later sections. 

In the LMTO formalism as noted before,the Schr6dinger equation is treated as 

an eigenvalue problem subject to the boundary condition of a specified log-derivative 

at the sphere boundary. One can further consider parametrization of the function 

El(D) inverse to DL(E). For this purpose we shall use the Rayleigh-Reitz variational 

principle with a radial trial function of arbitrary log-derivative D at the sphere 

boundary given as 

where 

r r) = r  + w(D)r 

w(D) - r D - D.  (1-39) 
r D - D~ 

Here r  -- r  , 4;~ = 4;,(s). Further we see that  

r = r D~ - D~ (1-40) 
D - D~ 

With the basis elm(D, ~ = iIYzm(§162 r) the matrix elements of the Hamiltonian 

in the sphere, 

<r - E, tIr = wl(D)6~,16m, m (1-41) 
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<r162 = 6v,6m,.~ [1 + oo,(D')o~,(D)<r 

With these we obtain the variational est imate 

(1-42) 

El(D) = E.~ + (r E.llr 
<eL(D) > 

: S~l + coz(m) + O(e 3) (1-43) 
i + <ebbS(D) 

where e = E -  E . .  

The variational est imate El(D) is thus a single valued function confined to a 

energy-window 

+ 

We shall refer to (1-44) in later subsections. 

1.3.2 Envelope fun tions and structure matrices 

In this subsection we sl dl discuss the envelope functions and structure matrices. 

The requirement of an envelope function is that it should be reasonably complete in 

the interstitial region i. e. in the region between atomic spheres. For closed-packed 

lattices the interstitial region is small,and if one applies the atomic sphere approx- 

imation mentioned before, this region need not be considered. In such cases the 

above requirement is mild but even then each envelope function should be smooth 

so that the radius of convergence of the one centre expansion exceeds the atomic 

sphere radius. For fast e-convergence each envelope function should be a reason- 

able solution of the Sch(hnger equation in a larger region between the atoms. The 

augmentation then needs to take place only for the few lower ~-components i.e. s- 

, p-, (for transition and noble metals) the d-, and for rare earths and actinides the 

f-components. As noted before the potential between the atoms is rather fiat and 

kinetic energy ~2 - E- V(r) is rather small. One may thus choose for the envelopes 

the solutions of the Helmholtz equation (V 2 + n2)X(e) -- 0 with ~2 small. In the 

partial wave methods like the KKR or the APW ,the potential is approximated by 

a muffin tin potential and ~2 is chosen equal to E - VMTZ such that X (e) is an exact 

solution of the Schr6dinger equation in the interstitial region. For evaluating the 



Chapter  1. The Linear MuJfin Tin Orbital Method 15 

Hamiltonian and overlap matrices we must include the integrals over the interstitial 

region or eliminate these by employing ASA. The simplest choice is to set n2 = 0 

and in this work we shall mainly deal with this set. The envelope function - (e) of aRL 
a MTO is thus defined to be atom centered angular momentum eigenvalues of the 

Laplace's equation and this has the form of static multipole field given by 

KRL(r~R) = YL ( rR)  (1-45) 
where r~ = ~ - / ~ ,  and L = composite angular momentum index. 

We note that  the above is irregular at ~ ' - / ~  and is the irregular solution of the 

Laplace equation, the regular solution being 

JRL(r~R) = YL(FR) (1-46) 
KnL(r~)  may be expanded in terms of JRL(r~R) as, 

( ? ) l '  YL,(r'R,) SRL,R'L' K R L ( r ' R )  E L' 2(21 + 1) 
E 7 = - JR'L' (rR)SRL,R'C' (1-47) 
L ~ 

valid for rR <_ IR - R'I �9 All distances are measured in terms of an arbitrary length 

co ,which may be the lattice constant or the Wigner-Seitz radius of the lattice. The 

expansion coefficients S - [SR'L',RL] are called the structure constants. Actually 

they are called bare canonical structure constants for reasons to be clarified soon. 

They only depend on atomic positions in units of co and is thus independent of the 

atomic sphere potential and the lattice parameters or W. S. sphere radius. They 

are thus fixed for a particular lattice type and hence to be calculated only once for 

a bcc,fcc or sc system. They may be expressed as two centre integrals with the 

z-axis chosen along the inter-atomic vector/~ - / ~  ,of length d. The bare canonical 

structure constants are given by the general formula 

[ ( 2 l ' + 1 ) ( 2 l + 1 ) ]  1/2 (d)e+l+l 
S,'lm = (--) '+M+l(l + / ' ) 2  (l' + M)-O 7 -/l~/-)O'+ ) ~ ) ( l -  M) (1-48) 

with particular elements like 

Sss~, : - 2  ,Ssp~, = (2x/3) (1-49) 
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etc. For a general direction of z-axis the structure constant matrix is to be obtained 

from (1-48) and table I in (Slater and Koster,1954) or directly from table II in 

(Andersen et at ,1978). In (1-15) the requirement of fast 1-convergence leads to a 

long-range power law decay for the muffin tin orbitals(MTO). But as indicted in 

section 1.1 the envelope function is to be augmented not only inside the atoms at 

which it is centered but also inside all other atoms. We may therefore instead of 

(1-45) use solutions of Laplace's equation which are irregular also at the neighbouring 

sites. A highly localized in space envelope set is thus obtained. 

We shall use a special bra-ket notation (used very frequently by Andersen and 

coworkers) for convenience of analysis. The unscreened or bare MTO K ~ , RL(rR) and 

the screened MTO , K ~ , L ( r R )  a r e  denoted by IK~ ~ and I K ~ L )  c~ . The superscript 

oo indicates that  the functions extend throughout all space. Omissions of the sub- 

script oo ,as in IK~ IJ~L } means that  the functions are truncated outside the W. 

S. sphere centered around/~.  In this notation the bare multipole about all sites of 

the structure are given by, 

IK> ~176 - I K > -  [J>S 

The on-site elements of S are defined to be zero. 

(1-5o) 

The regular solutions JR'L' are 

modified by adding the amount - - a R ,  l, of the irregular solution 

IJ ~) = I J } -  lK)a (1-51) 

Here a is the diagonal matrix [aRl] �9 The multipole field screened according to (1-51) 

is defined in analogy with (1-50) as, 

IK~> ~176 = [K> - I J > S  ~ (>52) 

By inserting (I-51) in (1-52) we find that the screened structure constant matrix is 

given by 

s = s ( i  - ( 1 - 5 a )  

o r  

o r  

( S a )  - 1  -[- oz - -  S - 1  (i-54) 

s ~ = S + SaS ~ (i~55) 
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and the screened multipole field is given by, 

IK~) oo = I K ) ~ 1 7 6  

: IK~176176 + a s )  (>56) 

The so called screening charge is therefore given by aS  ~. We now want to deter- 

mine a such that  (1-53)-(1"-56) have the shortest range. We furthermore want the 

screened structure constant to be canonical i. e. independent of the atomic poten- 

tial and the scale of the structure and therefore choose the elements [aRt] to be site 

independent constants. In fact we are left with three parameters as, ap, a d . By 

numerical inversion of the 9 • 9 matrix a~ -1 - S~, on a lattice with Bloch vectors 

and subsequent Fourier transformation S~L,R, U m a y  be obtained. The shortest 

possible range is given by a t ' s  

as = 0.3458 ; ap = 0.05303 ; ad = 0.010714 

a t = O f o r ~ . >  2 (1-57) 

The parameters are generally represented by/3 and the representation is also given 

the superscript /3. By plotting any element of S ~ ,say the ssa element against 

d/w the shortest possible range may be ascertained. More details may be found in 

Andersen(1984). 

We thus want to use IK~) ~r outside augmentation spheres and IX~/inside. Both 

the functions can be expressed as one-centre angular momentum expansions (as in 

(1-15))and hence the augmentation is done by continuous and differentiable match- 

ing of at the sphere radii(sR ) . Each radial function 

and 

d~(r) = [2(21 + 1)] -I ( r / ~ ) * -  a, ( r /~ )  -'-1 

should be matched by a linear combination of Ct(r) and q~l(r) . The latter two func- 

tions we recollect were obtained numerically from the radial $chrSdinger equation at 

energies Ev and EL, + dE,, and subsequent normalization in the sphere. A function 
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f(r) can be matched in the previously discussed manner to a linear combination of 

two functions in the following way 

f(r) --+ [a(r)W{f,b} + b(r)W{f,a}]W{a,b} -1 (1-58) 

where 

W { a , b }  - S 2 [ ~ ( S ) b ' ( S ) - b ( S ) a ' ( S ) ]  

- S a ( S ) b ( S ) [ D { b }  - D {a } ]  (1-59) 

is the Wronskian and D{} is the log-derivative at the sphere boundary r=S, 

ff}s) = ~a(s) + ~b(S) } (1-6o) 
(s) = aa'(s) + •b'(S) 

Solving for a,f~ we obtain, 

a = f (S )b ' (S ) -  f '(S)b(S) (1-61) 
a(S)b'(S) - a'(S)b(S) 

1~ = _ f ( S ) a ' ( S ) -  f '(S)a(S) 
a(S)b'(S) - a'(S)b(S) 

(1-62) 

We thus see that, 

O~ --~ 

W { f , b } / S  2 
W{a,b}S 2 

W{f ,b}  
Wia, b) 

Similarly 

Hence 

W{f ,a}  (1-63) 
~ =  W{a,b} 

aa(r) + t3b(r) = _ [a ( r )W{ f , b }  + b( r )W{ f ,a } ]  (1-64) 
w{a,b} 

whose matching with f(r) can be performed provided W{a, b} # 0. The Wronskian 

of r and 4) may be obtained from (1-59) and Green's second identity as 

1 : ( r  <r  V 2 + V -  E,~I~;~,> (1-65) 
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to be 

w{~,~} =o 

For the radial solutions of Laplace's equation we obtain , 

(1-66) 

W { K , J ' ~ } = W { k , J } = w / 2  (1-67) 

The tail of the MTO is exi~anded in (1-52) in J~ functions only ,whereas we recall 

that  the tail functions of the energy independent MTO introduced earlier is expanded 

in terms of r functions only. These two radial functions for the same R1 must have 

identical logarithmic derivatives. With a given c~ ,J~(r) is specified by (1-51) whereas 

r by (1-34). Since they have the same log-derivative from (1-59),we have 

W{J" , r  '~} =0 (I-68) 

also as 

Hence, 

and thus 

r = r + r (1-69) 

O= W{J~,r  ~} = W{jC',r +o'~W{J'~,r (i-70) 

o~= W{J ~', 6 ~} { j%r  (1-71) 

Once again utilizing the result (1-68) we obtain an expression for o~ in terms of 

logarithmic derivatives of 4; ~ as, 

w{J~,r o} =o 

or, 

hence, 

w{J,6o}-~w{K,6~} = o  

O~ l 
W{J,r ~} 

(,/~)~+, D{6"-l} 
2(2l + 1) D{r ~,} + l  + I (1-72) 
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while the last expressions on the right hand side had been obtained by expanding 

the Wronskians in terms of log-derivatives. 

If a(r) = r and b(r) = r then we find that, 

J(r) (1-73) 

K(r)  -+ ~Ja(r)W{K,r162 ~} (1-74) 

The augmented multipole field thus has the one-centre expansion , 

I K ~ ) - ~ I r 1 6 2 1 6 2 1 6 2  ~] (1-75) 

where tile W{} are diagonal matrices which also obey a useful relation 

W{K, d~ J" ,  r = w/2 (1-76) 

In the next subsection we shall introduce the atomic sphere approximation (ASA) 

and obtain expressions for Hamiltonian and overlap in this approximation. 

1.3.3 Atomic Sphere Approximation 

In the Atomic Sphere Approximation (ASA) the solid is assumed to be wholly 

composed of slightly overlapping atomic Wigner Seitz spheres. As a result there 

is no interstitial region. The LMTO formalism for the approximation assumes a 

particularly simple form which we shall discuss in some details now. The Wigner- 

Seitz spheres are taken as augmentation spheres and Xi term in (1-15)drops out 

and the non-spherical components of the potential are neglected. 

We shall use frequently the special bra-ket notation introduced earlier. The 

augmented orbital in this notation may be expressed as, 

ixo)  = ir + ir (1-77) 

As noted before IX~RL) ~ are functions spread out over all space,whereas ]X~L) is 

restricted to its own augmentation spheres. Also we rewrite (1-34) as 

(1-7s) 
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For the MTO's o a is a diagonal matrix. We also obtain for the interaction between 

r and q~ and their energy derivatives the following matrix equation 

<r162 : ~ ; <r :o 

<r : o ~ ; <~1~> =p~ : (o~) ~+p (1-79) 

p is a diagonal matrix with elements 

�9 2 = f r s s ~  . 
PRL = (r JO C R L ( E ' r ) r 2 d r  (1-80) 

O~ 1 / 2  We note that  0 _< PRL <_ PRL,RL �9 We recollect from (I-44) that ~RL corresponds to 

the energy window. 

The expression for the Hamiltonian and overlap matrices will be introduced now. 

The overlap matrix 

O ~ =~ <x~lx~>oo = i + oah ~ + (o~h~) t + h~p~h~ (1-81) 

Apart from the on site terms of (1-81) the terms in the first part of (1-81) are the 

one, two,three centre terms respectively. We recollect here that  

Ix> ~176 = Ix) ~ + Ir + Ir  ~ 

For calculating the Hamiltonian matrix we recollect the following relations 

( - v  2+V)Ir  : 

( - v  2 + v -  E~)Ir = 

( - V  ~ + V -  E~)Ir : Ir 

EIr 

0 

(1-82) 

As a result 

Ha = ~<x,~t_ v~ + vIx~> ~ 

= (i + o~ ~ + (i  + o~ ~ t ~ (i + oOh o) + hOE~ph - (1-83) 

which also once again involves one,two,three centre terms. In other words the diag- 

onal matrix EL, commutes with the surrounding matrices and the second and third 

terms may be subsumed in the overlap matrices. 
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By rewriting (1-77) in terms of (1-78) we obtain, 

Ix~> ~ - Ir + o'~h '~) + Ir ~ (1-84) 

Assuming (i +o~h ~) can be inverted we can go back to the unscripted representation 

defined in terms of r and r originally introduced in (1-21),(1-22) as, 

Ix> ~ - I x ~ > ~ ( i  + o~h~) -1 = Ir + Ir (1-85) 

In the new basis the Hamiltonian is given by 

H = EL, + h + hE~,ph - H (2) + hE~,ph (1-86) 

and since H is hermitian,E~,p are diagonal matrices h too is a hermitian matrix. 

The overlap matrix in this representation is given by, 

0 = i + @h (1-87) 

The new set of orbitals is orthogonal to the first order in h ..~ H - E .  and it is 

specified by the vector analogue of the scalar first order Taylor series (1-16) for 

energy dependence of the radial wave functions. In the terminology of LMTO the 

associated representation is called the 7 -  representation and the physical quantities 

(orbitals, Hamiltonian etc.) is given the superscript 7 .  Thus we see that in the ASA, 

the matrix h alone determines the Hamiltonian and the overlap,as well as coefficients 

in the one-centre expansion (1-15). The matrices E .  and p are the diagonal potential 

parameters .  Utilizing the matching conditions of earlier 

By a comparison with XRL in (1-77) with (1-75),we see that  

Thus 

so that 

,ooW~ K Iua~> ~ -+ - x ~  ~ , ~ ~  = f x ~ > ~  ( ~ )  

IX?~.~> ~176 = Ir + re> [ -  

(I-88) 

h~ = W { K , r  W{J~ ' r  S ~ (1-90) 
W{K,$o} + W{K,#,.} 

w { K , r  w{J~ ' .  ~ } s  o] (1-89) 
W { K , & ' + W { K , r  '~} J 
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From (1-67),(1-73) and (1-74) we get 

W 
W{ K, ~)a}W( J~, r = -~ (1-91) 

hence, 

h -  W{K,r } + W{J~,r162 

The approximate  Hamil tonian  H a (1) - E .  + h a is thus obtained as 

(1-92) 

H (1) - Ev + h a 

= E .  W { K , r  + (2/w),/2W{ja r162 
W{K,r 

_ c a + ( A ~ )  ~/2 S~ (Aa)~/2  (1-93) 

Here 

and 

(:~ -- E. W{K,r  (1-94) 
w i K , r  

(A~) I /2  = (21w)l/2W{g",r (1-95) 

are LMTO potent ial  parameters  both being diagonal matrices. The above formulae 

(1-94) to (1-95) are valid for any choice of a provided the corresponding S a defined 

through (1-53) to (1-55) does not have any poles. We may thus choose 

W{J,r _ (s/w) (2'+1) D { r  
7 -  W { K , ~ ) } -  2 ( 2 / + 1 )  D { r  

o ~ = 0 from (1-71) and q~a(r) = r  

The corresponding second order Hamil tonian  is given by, 

H (2) --= Eu + h 

(1-96) 

W{K,r 
= E. W{K,~)} + (2/w)I/2W{J~'r162 

= c'Y+ (A'~) 1/2 S "y (A'Y) 1/2 (1-97) 

where 

IJ'r) = I J ) -  [K)7 

and 

= -1 (1-9S) 
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The structure factor matrix in 3' -representation is obtained from 

The first potential parameter 

c a = E ~ - W { ~ , r  ~) 

= E ~ -  ( 2 / w ) W { K , r 1 6 2  

(1-99) 

(1-1.00) 

which determines the position of the R1 band and the screened potential parameters 

(A~) t/2 - - ( 2 / w ) l / 2 W { J a , r  = - ( w / 2 ) ~ / 2 W { K , $ }  - '  (1-101) 

determines the width and the hybridization strength of the band. That, the defini- 

tion (1-100),is equivalent to the earlier definition of C in (1-37) as the band centre 

can be seen from the following simple argument. Recollecting that  

"Or W K  _ r WK__~iK2.L ~:(r) ~ -W(K,~ a)[~(~) ~ ()w~,0o,] 
__ (1/2W~ 1/2 [~ ( r ) -  (C a - -  E u ) ~ ) a ( r ) ]  - \-Z-~- j 

~ Ca(c, s ) j  

Thus we see that  c a is the energy to the first order in its deviation from E~, for 

which the radial solution of SchrSdinger equation matches onto the K(r),(at r = s 

in the above ) the LMTO envelope,which is the irregular solution of the of the 

Laplace's equation. Thus c a is the energy for which the logarithmic derivative takes 

the value -1 - 1 . Thus the definition of c a, is equivalent to what was stated earlier 

in (1-37). Further (1-101) shows that A ~t/2 is proportional to the amplitude of the 

corresponding radial wave function at the average W. S. radius of the lattice co. We 

note that  

(~/2~ 1/2r (w/2) 1/2 r 1 7 6  (1-102) 

For a ' s  chosen independently of the potential t hen ,  H0) as is evident from (1-94) 

and (1-95),depends only on r and D{r but not on D{r ,and in this case the 
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information about  the energy derivative is carried entirely by o ~ as is seen from 

(1-71). When a = 3' as in (1-96) it becomes equivalent to D{r  . Also C is the 

energy for which r  has the logarithmic derivative -1 -1 at the sphere to the 

order (C - E , )  2 and A 1/2 becomes the value (w/2) t/2 r to order ( C -  EL,) . 

One can thus see that  H (1) is a Hamil tonian correct to first order whereas H (2) 

is correct to second order. 

We have earlier ment ioned that  the most localized orbitals are obtained for a - 

/3 whose magni tudes  also we provided earlier. The many decimal places however 

do not indicate that  the localization of S a depends that  sensitively on the exact 

values of c~ but rather the values correspond to the the logari thmic derivative values 

De{<b ~ = 2 . 0 ,  2.4 and 2.6 f o r e  = 0, 1, 2wi thDie{r  = e for e >_ 3 which 

were the parameters  actually used in the numerical calculation of S ~ . 

The fourth potential  parameter  is p defined in (1-80). We have shown it earlier 

in (1-44), tha t  p-1/2 is the size of the energy window inside which a linear method  

is supposed yield realistic results. 

1.3.4 Calculation of total energy and charge density within the ASA 

In the ASA for the calculation of band structure to second order in (Ej - E.) we 

have three possible ways in accordance with what we studied in earlier sections. 

These procedures will be discussed for convenience at the end of this section. 

For a crystalline material characterized by Bloch vectors {/~} energy eigenvalues 

accurate up to second order in (Ej - E.) may be obtained from the matrix equation 

for the Hamiltonian in the orthogonal representation 

H'Y(f~)uj(f~) = uj(k)Ej(k) 

or as 

u}H~(2)uj : E] 2) (1-103) 

For each /~ the eigenvectors form a unitary matr ix correct to Ej(f~) - E~, are now 

given by 

Cj(k,  = Ix (k)b (k) 
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= [1r + I&~>h~(#)] ~,(~) + IK~,>b~(;) 
= E [r + r - E.m)] EYL(§ 

R L  m 

+ ~ K ~ ( ~  + $)expi.f.TbRL,~(#) 
~,/~,L 

The interstitial part is given by the last term drops out in the ASA calculation 

for the electron density in the self-consistent procedure. 

The spherically averaged charge density needed to construct the ASA potential 

for the next iteration toward charge density is 

1 

l 

(1-1o4) 

in terms of the energy moments of the 1-projected density of states, 

"~, = E [Ej(;) - E.]" E lu.,,J(k)l ~ (1-1o5) 
jg,occ m 

The wave function correct to first order in (Ej - EL.) is given by, 

R L  

= E + ( 4  
RL 

R L  

(1-106) 

where the fact that  g diagonalizes H ~'(2) have allowed us to transform to multi-centre 

expansion of overlapping energy independent orbitals into one centre expansion of 

non-overlapping energy dependent partial waves. The eigenvalues E) 2) have errors 

of third and higher orders in their deviation from E.  because the second order terms 

in the Hamiltonian and overlap matrices, have been neglected so far. 

The term extra in the Hamiltonian (1-86) are most easily taken into account by 

first order perturbation theory. From (1-6) and (1-85)-(1-86) we get, 

= uj H (2) + h E . p h -  E( i  + hph) uj 

t (2) ̂  - [i + 2-. = E} 2) + u~,~pIE;  1 - E~/2u, E . b t ~ } 2 ) i  - ~ . / ~ j ]  
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from which we obtain the one electron energy correct to second order in (Ej - E.)  

E; = E] 2) + ERL E.Re PR~ (Z]  2) - E.Re)2 g ~  lu~,jl 2 (1-107) 
i + F.Re PRi (El 2)- E.R~)2 E~ luR~jl 2 

For making self-consistent calculations in ASA electron density spherically averaged 

in each sphere is needed . For this purpose one-centre expansions are sufficiently 

accurate. The spherical number density per spin is in general given by, 

pR(r) : (47r)-' ] ~  rE: r NRe(E)dE 
. 

in terms of g -projected density of states 

NR~(E) = E 6(E - Ej) E lURL,jl 2 (1-108) 
j m 

We shall now expand r in a Taylor series and define the projected density of 

statcs and define the projected total density of states 

and moments 

El occ 

PR~ ---- N R e ( E ) d E  --~ E lURL,j 12 (1-109) 
J 

= " (E- E.R )q NR (E)dE (1-110) 

and the density of states may be conveniently expressed as 

pR(r) = (4~r) -1 ~ [n r + 2 ~(1),,.l{e r162 + rn(~{r + r162 (1-111) 

(1-111) is valid to second order.  The subscript Rg has been dropped for convenience 

inside the square brackets. Since, as shown in earlier subsection, the eigenvectors are 

correct to second order, hence r has been expanded up to second order in Taylor 

series. It should be noted that the projection in (1-109)-(1-1!0) is onto the non- 

overlapping partial waves as well as onto the overlapping nearly orthogonal orbitals. 

This follows from (1-106). In (1-111) the first term contributes to the net 1-charge 

in the sphere and the remaining terms redistribute the 1-charge within the sphere. 

We can see this by integrating each term in the sphere. 
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The total energy of the electrons in ground state according to the density func- 

tional theory (Hohenberg and Kohn (1964), Skriver (1984)) is given by, 

It- 
Here v~t(rO is the electrostatic potential from the nuclei and n(r~ is the total elec- 

tronic density generated by some potential V (r-'). Since Etot is obtained variationally 

V(r-*) need not be the actual self-consistent atomic sphere potential. In the ASA, 

the kinetic energy is : 

iES fs~ T = EN(E)dE-  ~ vR(r)pR(r)4frr2dr (1-113) 
R 

Here the second term is the electron-electron interaction energy within density func- 

tional theory. In (1-113) above N(E) and pR(r) include both spin directions. Al- 

though the remaining terms require the full, rather than the spherically averaged 

p(r) but if symmetry lowering displacements are not involved the spherically av- 

eraged p(r) is sufficiently accurate. Using these approximations and including the 

electrostatic interaction between the ion-cores and within local density approxima- 

tion the total energy expression may be suitably represented as, 

ZR ZR, 
E,o,= T + ~ ] ~  : - - =  + ~-]UR (i-ii4) 

R R, I R -  R'I R 

The second term in (1-114) is the Madelung term and ZR is nuclear minus the 

electronic charge in the sphere centered at R .  The third term is the sum of intra- 

sphere interactions between the electrons and between the electrons and the nucleus 

in the sphere,that is, 

L'" L ' UR = Exc[p(r)] - 2--r + ~-- -~[ 41rr2dr (1-115) 

dropping the subscript 1% within the bracket. 

In actual self-consistent numerical schemes after the calculation of the charge 

density, in each iteration,the potential is obtained by solving the Poisson's equation 

mentioned in section 3.1, and thereafter obtain by solving the Schr6dinger equation 

the quantities CR~, eRa, Cm and the potential parameters Cm, Am,pRl etc. and the 

cycle is repeated until self-consistency is achieved. 
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The normal practice is to mix the output density from the current cycle and the 

input density from the previous cycle to obtain a 'new' input density for calculating 

the potential which is closer to the self-consistent one. 

A widely used procedure is tile linear mixing (Dederichs and Zeller (1983) and 

references therein' by which the input density at the M + 1 -th iteration is obtained 

by 

where a the mixing parameter belongs to the range 0 < c~ <_ 1. Other mixing 

schemes such as the Anderson mixing (Anderson (1964), Matheiss and Hamman 

(1986)), Broyden mixing (Broyden (1965), Srivastava (1985)) are also in vogue. The 

mixing is necessary because a small change in input density may cause a large change 

in the output density thus causing a large fluctuation in the calculation. 

1.4 Extens ions  and applicat ions of the L M T O - A S A  

Various types of extensions and improvements over the ASA are in use and references 

may be found in the LMTO literature (Andersen et al (1984, 1985)) The ASA 

approximates the the unit cell to be a sphere and also truncates the one centre 

expansion after the d-block. Corrections for both of these may be introduced by 

the the combined correction scheme. Full potential LMTO techniques have been 

developed for clusters and molecules by Springborg et al (1987) and for crystals 

by Fernando et al (1986), Weyreich (1988), B15chi (1989) and Methfessel (1989, 

1988). Green function techniques have been developed within LMTO for treating 

impurities in crystals and for surfaces and interfaces (Lambrecht et al (1986)). 

A simple as well as accurate coherent potential approximation within TB-LMTO 

formalism for substitutionally disordered alloys had been developed by Kudrnovsk~ 

et al (1987, 1990). Also self-consistent recursion method calculation for liquids and 

amorphous systems (Nowak et al 1990) and self-consistent Green function calcula- 

tion for extended defects has been performed with TB-LMTO . 

The screened structure factor matrix is also truncated beyond the l = 2 block 

i.e. by setting al = 0 for 1 > 2 . If we refer to the l > 2 orbitals by H and the 1 < 2 

orbitals by L and the corresponding blocks of structure matrix accordingly we may 
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obtain the HL block of S a 

(Sa)HL = (S0),~'5 + (sO)HL C~L (Sa) LL (1-116) 

The HH block too may be obtained by, 

(so)"" (so)"" :" J- (sO) HL [(OLL)-I-O/L OLL] (S ~ (1-117) 

This technique is often referred to as the blow-up technique. 

A particularly important tool in the LMTO calculational scheme is the down- 

folding technique which we shall discuss in some detail now. Although the minimal 

MTO basis set usually contains nine orbitals one s, three p and five d orbitals per 

atom per spin it is sometimes possible and also convenient to adopt an even smaller 

basis set. The downfolding serves many useful purposes (Lambrecht et al (1986)) 

such as providing simple physical pictures of phenomena,calculation of structural en- 

ergies by the  Andersen force theorem (Andersen et al (1985)), in calculating charge 

density profiles at surfaces. Also as we shall discuss a little latter the occurrence of 

ghost bands may be avoided by application of this technique. 

The downfolding technique is a particular type of screening transformation. 

From the above equation, we see that  the multi-centre MTO expansion which may 

be written in the form ~RL I~RL(rR)>eONm(E ) o  -lure(E) to be the solution of the 

Schr6dinger equation-for the solid provided the KKR-ASA equations are satisfied. 

The partial wave set in the approximate one centre expansion may be divided into 

a lower set and a lower set CL(E,r) and a higher set Cg(E,r). Let us corre- 

spondingly divide the diagonal matrices of Potential function into higher H and 

lower L blocks namely 0 0 SLL , SHH , SOL etc. This division can be made such that  

for the higher block IP ~ >> IS~ . Rewriting the KKR-ASA equation (eq) as 

0 = 0 we expand them in block matrix form as 
-- ~ "RL ~RL 

introduced above, 

[pO _ SOLL] [NO(E)] - '  uL(E) - SOLH [N~ - '  uH(E) = Oc (1-118) 

and, 

+ - so.] = 0. (1-~19) 
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po (E)  for l ~ oc diverges, whereas from the previous Wronskian relationship it 

may be shown that  P ~ 1 7 6  is finite. Hence N ~  will vanish for higher 1 

values. The above equation is thus further reduced to 

uzi(E) =" N~ [P~ SOL [NL~ -~ uL(E) (I-121) 

and they thus provide a way of obtaining the higher ~, UH(E) in terms of the lower 

~, uL(E). 

For performing the downfolding transformation,an energy dependent value of 

screening constant /9(E) is so chosen that  f{L = aL and ~H(E) -- P~(E)  -1 : 

P~(E)  + all. The last condition is equivalent to making PH ~(~) -- oc. The corre- 

sponding RL : H channel may be dropped from the MTO envelope set. In fact any 

channel may be removed by the above procedure. The transformation equation for 

the structure matrix from some suitable screening transformation is obtained as, 

S ~(E) = S ~ + S a (/9(E) - a) S ~(E) (i-122) 

and with 

~H - aH - P ~ ( E )  -1 (1-123) 

one obtains for the HH block, 

= r r_)~{~- l~(E)  

or, 

SZ(E) = P~(E)F~H(E)SHH 

where F~H(E ) = [PH -- Sgg]- l , the  so called higher block Green function. Similarly 

we obtain 

S~H(L E ) -  PH(E)FHH(E)SHL (1-124) 

and, 

sS(E) LL = SLL + SLHFHH(E)SHL (1-125) 
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dropping the superscripts c ~ .  Utilizing the above equations we obtain, 

[PL(E) - -  S L L  - -  SLHFHH(E)SHL] [NL(E)]-l uL(E) = OL 

UH(E) = NH(E)FHH(E)SHL [NL(E)]-lUL(E) 

(1-126) 

(1-127) 

With the upper block being removed ,the lower block envelope set now looks like 

IK~(E)) ~ = [ / ( c ) -  IJL>S #(E) r#(E)\z#(E) (1-128) - -  O H  I ~ ' H L  

dropping the subscript aL = / ~ L  �9 

For the lower angular momenta block there are two degrees of freedom for the 

augmentation namely the [JL and [eL(E)> function, but for the higher block [K~ / 

has been removed and only the tail function IffH (E)> is left, which is set proportional 

to Ir as, 

IYH (E)) = -ICH( E) ) NH( E) / PH( E) 

so that the lower block MTO is found to be 

Ix[(E)> ~176 = ICs(E)>Ns(E)+ IA> [PL(E) r 
- -  ~LS ] + ICH(E)>NH(E) [PH(E)] -~ S~H(~ ) 

The linear combination of only the lower MTO's will equal the one centre expansion 

including the higher partial waves when the lower KKR-ASA equations(eq) are 

satisfied. 

To obtain a Hamiltonian form for the downfolding equations the higher block 

Green function is approximated as, 

E - E.H F~ (1-129) 

whence the structure function matrix takes the form, 

L ~H J z-x H 

The downfolded KKR-ASA equations now take the well known Hamiltonian form 

with the Hamiltonian and overlap having the matrix form, 

E.H F,y "~ + + . . j  
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A convenient energy independent downfolding representation maybe obtained by 

setting fiL = C~L and flu - /~u(E,,H) =-- [P~(E,,u)] - t  which sets P~H(E,,H) = oe i. e. 

VI~ is chosen at E,,H whence FHu(E) may be approximated as, 

v Z  
rg.(E) " F ~  E (1-132) 

Use of the above two equations in KKR downfolded equations would yield a similar 

set of energy eigenvalue equations with 

As we mentioned before the downfolding is a very efficient technique to remove 

ghost bands which occur due to the nearly singular behavior of H (2) or S ~ and 

the resultant long ranged oscillations of the nearly orthogonal orbitals. This occurs 

(oztt) - 1 -  (S~ HH vanishes. The damping from other orbitals when the determinant 

causes a ghost band and not a divergence. The removal of these orbitals by the 

downfolding technique is the remedy. 



Chapter  2 

Ground state properties of alkaline earth 

chalcogenides 

2.1 I n t r o d u c t i o n  

Alkaline - earth chalcogenides are an important group of semiconducting materials. 

The Beryllium chalcogenides : BeS, BeSe and BeTe are potentially good materials 

for technological applications. BeS is an interesting material with high hardness and 

BeTe is a wide gap semiconductor. These materials have application for blue-green 

laser diodes and laser-emitting diodes (Waag et al (1996)). These compounds are 

difficult to handle experimentally, and theoretically not much work has been done on 

them (Stukel (1970), Sarma et al (1995), Van Camp and Van Doren (1996), Mufioz 

et al (1996a), Luo et al (1995), Mufioz et al (1996), Gonzs et al (1997)). 

Few experimental data on their electronic structure are known (Yim et al (1972)) 

and these do not match well with the theoretical results. The elastic properties 

of these chalcogenides have not been established with any degree of rigour. High 

pressure phase tr.ansitions in these compounds from Wurzite to NiAs structures have 

been reported. Like the Be chalcogenides, which also go into the Wurzite structure, 

these show unusual behaviour due to the small core size and absence of occupied p 

electrons in the bonding process. Unlike the other alkaline earth chalcogenides, the 

Be compounds are more covalent than ionic with a Phillips ionicity value ranging 

from 0.169 in BeTe to 0.317 in BeS. These chalcogenides have large bulk moduli and 

lattice constants that match those of GaAs and ZnSe (Dandrea and Duke (1994), 

Mensz (1994)). 

34 
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The Magnesium chalcogenides are wide band - gap semiconductors and are 

of technological and scientific interest. MgTe is the end point of MgxCdl_.~Te, 

Mg~Mnl_xTe and Mg~Znl_~Te ternary systems, all of which are promising optoelec- 

tronic materials. MgS and MgSe have the sixfold coordinated NaC1 (B1) structure 

characteristic of ionic compounds like MgO. They transform under pressure to the 

eight-fold coordinated CsC1 (B2) structure. Few theoretical and experimental stud- 

ies of the electronic properties of MgS and MgSe have been carried out (Peiris et al 

(1994), Duffy et al (1995), Van Camp and Van Doren (1997)). MgS undergoes B1 

to B2 transition at 175 GPa. Ruoff et al (1998) have shown that MgSe undergoes a 

continuous transformation from B1 to a seven-fold coordinated FeSi (B28) structure 

starting from 99 GPa and completing at 202 GPa. At 429 GPa it undergoes transi- 

tion to a orthorhombic distortion of the B2 structure. Experimental studies of MgTe 

are rarer because of its high hygroscopicity. The low temperature structure of MgTe 

has had some controversy. Some of the earlier experiments suggested that MgTe 

crystallizes in the Wurzite structure (Zachariasen (1927), Klemm and Wahl (1951), 

Parker et al (1971)). However, most recent experiments and theoretical calculations 

predicted that MgTe stabilizes in the NiAs (BS) structure ( Li et al (1995), Yeh et al 

(1992), Van Camp and Van Doren (1995)). Recently we have carried out theoretical 

calculations to predict the MgTe stabilizes in the B8 structure at normal pressures 

and undergoes transitions first to a PH4I and then to a B2 structure at pressures 

higher than 60 GPa (Basu Chaudhuri et al (1999)). 

CaS is known to be efficient in cathode, X-ray and radio luminescence, with a 

bright response to excitation, a high storage power and a bright infra-red flash. Luo 

et al (1994) have carefully studied the behaviour of the Calcium chalcogenides. The 

chalcogenides are electronically very similar to CaO and crystallize in the B1 phase. 

CaS and CaSe transform into the B2 phase at around 40 and 38 GPa respectively. 

CaTe first transforms into a mixture of the B1 and MnP phases at 25 GPa and 

finally into the B2 phase at 33 OPa. 

The Strontium and Barium chalcogenides show behaviour very similar to the 

Calcium chalcogenides. There has been rather more and extensive experimental 

and theoretical investigations into these compounds, both in the study of pressure 

induced B1 to B2 transitions and pressure induced semi-conductor/metal transitions 
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(Luo et al (1994), Zimmer et al (1985), Syassen (1985), Weir et al (1986), Cervantes 

and Williams (1998), Kalpana et al (1994)). 

Theoretical study of the optical properties of alkaline-earth chalcogenides have 

been carried out by Stepanyuk and coworkers (Stepanyuk et al (1989a), Stepanyuk 

et al (1989b)). The authors have shown the importance of the energy dependence of 

the optical transition matrix element for accurate descriptions of the permittivity. 

The calculations were based on the LAPW technique. 

The earlier theoretical studies used a variety of techniques : from the Linear 

Combination of Atomic Orbitals (LCAO) and empirical tight-binding (E-TB) to 

the whole gamut of local density approximation (LDA) based methods including 

the pseudo-potential, the linearized augmented plane wave (LAPW) and the lin- 

earized muffin-tin orbitals (LMTO) techniques. In this work we shall use the same 

theoretical technique : namely the LDA-based tight-binding LMTO (TB-LMTO), 

to study the whole series of chalcogenides. 

The aim of this work is not to focus on any specific property of a particular 

compound, but rather to study the trends and variations across the whole series of 

compounds and what these trends reveal about the electronic and elastic properties 

of these class of materials. 

The local density approximation (LDA) of the density functional (DF) formal- 

ism (Hohenberg and Kohn (1964)) provides a rather accurate description of the 

ground state properties of the elementary spd bonded metals. Some aspects of the 

description are, nevertheless, less satisfactory. The usual practice had been to use 

within the LDA approximation, the exchange-correlation suggested by von Barth 

and Hedin (yon Barth and Hedin (1972)). In this approach, for instance, the co- 

hesive energy is too large, in particular for 3d metals, where the errors can be a 

few eV. The lattice parameter is also underestimated and for 3d metals. An early 

attempt to improve the LDA approximation was the gradient expansion approxi- 

mation (GGA). Calculations for atoms and a jellium surface (Langreth and Perdew 

(1977)) show, however, that the GGA does not improve the LDA approximation, 

if the calculated ab - initio coefficients of gradient correction (Rasolt et al (1979), 

Rasolt and Geldart (1980)) are used. The errors in the GGA have been studied by 

Langreth and Perdew (1977), Langreth and Perdew (1980) and by Perdew (1986). 
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Based on this analysis Langreth and Mehl (1983) and Hu and Langreth (1986), as 

well as Perdew (1986) and Perdew and Wang (1986) (PW), have proposed modified 

gradient expansions for the exchange - correlation energy. 

The LMH and PW functionals have only been tested in rather few cases, but 

they give encouraging results for the ground state properties in these cases. For 

atoms it was found that both total energies and removal energies are improved in 

the LMH functional compared to LDA approximation (Langreth and Mehl (1983), 

Hu and Langreth (1986)). The PW functional gives a further improvement in the 

total energy of atoms (Perdew (1986), Perdew and Wang (1986)). The binding 

energies of the first row diatomic molecules are improved by both functionals. In 

the study of the band structure of V and Cu, it was found that the LMH potential 

gave an improvement in the Fermi surface for V but not for Cu. The deviation of the 

band structure from photo-emission results also increased somewhat for Cu. The 

ground state properties were not studied. For Si, one finds a similar error (factor 2) 

in the band gap as in the LSD approximation, while the cohesive energy (4.89 eV) 

was also improved over the LSD results (5.19 eV) compared with experiment (4.63 

eV). 
The usefulness of LMH and PW functionals relative to standard vBH-LDA has 

remained a matter of controversy. It has thus motivated us to compare the use of the 

different exchange-correlation functionals in our systematic study of ground state 

properties of alkaline earth chalcogenides. We shall obtain, in addition to the band 

structure and the density of states, the equilibrium lattice parameter and the bulk 

modulus. We find that in most cases the LMH functional gives somewhat better 

results than the vBH-LDA. 

2.2 Resu l t s  and Discuss ion  

Not much work has been carried out on the Beryllium chalcogenides. Luo et al 

(1995) report experimental indication that BeSe and,BeTe undergo a first-order 

structural phase transition under pressure from a zinc-blende to a NiAs structure. 

This is unique among alkaline-earth chalcogenides (II-VI compounds), since most of 

them show a transition between NaC1 and CsC1 structures (Weir et al (1986)). In 
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addition these compounds have wide band gaps and high bulk moduli. Experimental 

results on BeS is not available. Mufioz et al (1996) have carried out theoretical band- 

structure investigations on BeS, BeSe and BeTe using an ab-initio pseudo-potential 

technique. They had used the Ceperly-Alder (Ceperly and Alder (1980)) exchange- 

correlation and a norm conserving, non-local pseudo-potential within the Kerker 

(Kerker (1980)) scheme. 

The top panel of figure (2.1) shows the band structure of the Beryllium chalco- 

genides. All three are indirect band-gap semiconductors with the highest occupied 

band at the F-point (top of the valence band is chosen to be the zero of our energy 

in all the figures), and the lowest unoccupied band at the X point. All three are 

'large' gap semi-conductors. BeS has the largest gap of around 0.3 Ryd (compare 

this with the band gap of 0.074 Ryd for Si). This decreases for BeSe and BeTe, 

which has a smallest gap among the series of around 0.15 Ryd. 

The figure (2.2) shows the density of states for the Beryllium chalcogenides, 

together with the partial density of states for Be and the chalcogen X in BeX. The 

features come out very clearly in all three cases. The lowest lying s-like feature going 

from just below -1 Ryd below the top of the valence band for BeS to just above - 

1Ryd for BeTe arises mostly from the s-electrons of Be. This is also clear from the 

band structures shown in figure (2.1). The bonding-antibonding states around the 

band gap are p-like and are strongly indicative of a predominantly covalent bonding 

in these chalcogenides. 

In the next step we have minimized the total energy for a variation of the lat- 

tice parameter using both the yon Barth-Hedin (VBH) and the Langreth-Mehl-Hu 

(LMH) forms of the exchange-correlation. The bulk modulus is then given by the 

expression : 

d2 E Vo Bo = - V - d -  

The results for the equilibrium lattice parameter and the bulk moduli are shown 

in table (2,1). The VBH gives lattice parameters lower than the experimental value 

while the LMH overestimates them. The lattice parameters increase as we go from 

BeS to BeTe, indicating that the covalent bonding is the strongest in the Sulphide 

and weakest in the Telluride, This is reflected in the decreasing bulk moduli as we 
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go from BeS to BeTe. For the bulk moduli, the VBH seems to give better estimates 

as compared with the more reliable of the experimental results. 

Unlike the Beryllium chalcogenides, the MgS and MgSe usually crystallize at 

normal pressures in the rock-salt structure and goes over to the CsC1 structure at 

higher pressures. This is more characteristic of the alkaline-earth chalcogenides. 

MgTe has a more complicated behaviour and we shall study this compound in de- 

tail on its own in the next ~chapter. Earlier work on these compounds have been by 

Van Camp and Van Doren (1996) and Van Camp and Van Doren (1997) using a 

screened pseudo-potential method, with pseudopotentials of the form proposed by 

Kleinman and Bylander (1982). Our results are quoted here. Figure (2.1) shows 

the band structure of MgS and MgSe in the rock-salt structures. In comparison 

with the Beryllium compounds, the valence band structure is not very different. 

The density of states, shown in figure (2.3) also confirms this. A careful study of 

the states straddling the Fermi-energy show that unlike the predominantly covalent 

Beryllium compounds, these states are not equi-weighted bonding-antibonding type 

states. The ionicity of the Mg compounds are higher, the asymmetric ionic like 

bonding states are more in evidence. MgS and MgSe are both indirect band gap 

semiconductors with a F-X gap of 0.125 Ryd and 0.115 Ryd respectively. For MgSe 

this matches well with the 0.11 Ryd gap estimated by Van Camp and Van Doren 

(1997). It should be noted that all these calculations are LDA based, so underesti- 

mate the band gaps. But this is a consistent feature throughout the whole series of 

materials. 

Calcium chalcogenides form a closed shell ionic system which crystallizes in a 

rock-salt structure. The band structure shown in the top panel of figure (2.4) in- 

dicates again that the valence bands have no d-like character and is predominantly 

sp-like. 

The partial density of states on Ca and X, shown in figure (2.5) now clearly 

indicate the asymmetric ionic-bonding states straddling the Fermi-energy. For Ca 

compounds and others that follow, the table (2.1) indicates that the LMH form of 

exchange-correlation gives much better estimates of the lattice parameters and the 

bulk moduli. It is also interesting to note that with increasing ionicity between BeX 

to MgX to CaX chalcogenides, the bulk moduli decreases : for example, 1048 kbar 
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Compound 

BeS 

BeSe 

BeTe 

MgS 

MgSe 

CaS 

CaSe 

CaTe 

BaS 

BaSe 

BaTe 

SrS 

SrSe 

SrTe 

Bo(VBH) 

kbar 

1047.9 

854.4 

645.6 

i Bo(LMH) 
kbar 

979.8 

788,8 

604.4 

Bo(expt.) 
kbar 

920 (~) 

670 (~) 

a(VBH) 

a , u .  

8.921 

9.536 

10.597 

a(LMH) 

a . u .  

9.224 

9.827 

11.0004 

839.1 

701.1 

694.6 

580.1 

438.8 

494,5 

473.8 

333.3 

611.3 

518.6 

400.8 

757.3 

636,0 

608 

506,1 

389.0 

432.7 

410.3 

295 

590.6 

484.4 

365.3 

660 4- 17 (b) 

798 4- 37 (c) 

525.0 (d) 

640 (e) 

510 (e) 

4204- 20 (~) 

394.2(f) 

4344- 26(g) 

294 (i) 

580(J) 

450 (k) 

400 {.~) 

9.478 

10.048 

10.431 

10.848 

10.490 

12.049 

12.438 

13.122 

11.189 

11.519 

13.192 

9.857 

10,456 

10.757 

11.239 

11.940 

12.132 

13.061 

13.613 

11.530 

11.807 

13.657 

a,u. 

9.197 (n) 

9.711 (a) 

10.618 (a) 

9.829 (b) 

9.832 (c) 

10.332 (d) 

10.754 (~) 

11.183 (e) 

12.000 (~) 

12.074(f) 

12.463 (h) 

13.242 (i) 

11.388 (j) 

II.784 (k) 

12.588 ('~) 

Table 2.1: The calculated bulk modulus(B0) in kbar, lattice parameters (a) in a.u. 

for alkaline earth chalcogenides using VBH and LMH 

(~) Reference 

(b) Reference 

(c) Reference 

(d) Reference 

(e) Reference 

(f) Reference 

(g) Reference 

(h) Reference 

(i) Reference 

(J) Reference 

Luo et at (1995) 

in Yeh et al (1992) A. Chizmeshya (private communication) 

Peiris et al (1994) 

Ruoff et al (1998) 

Luo et al (1994) 

Yamoka et al (1980) 

Ruoff and Grzybowski (1985) 

Grzybowski and Ruoff (1983) 

Grzybowski and Ruoff (1984) 

Syassen (1985) 

(k) Reference Luo et al (1994) 

('~) Reference Zimmer et al (1985) 

(n) Reference in Semiconductors other than Group IV elements and III- V compounds, 

edited by O. Madelung, Data in Science and Technology series V I I I  (Springer Vet- 

lag, Berlin, 1992) 
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for BeS, 839 kbar for MgS and 695 kbar for CaS. This is what we should expect 

from the naive idea that covalent bonding is the strongest type of bonding in solids. 

These bulk moduli are in good agreement with the experimental results (as shown 

in table (2.1). 

The band structure of the Ca and Ba chalcogenides (figure 2.4) show another 

feature of the series as compared to Be and Mg compounds. The bonding state 

immediately below the Fermi energy becomes narrower. This is also reflected in 

its narrow and high nature in the density of states (figure 2.6). This feature is 

also reflective of the transition of a wider covalently bonded bonding-state to to 

narrower ionic bonding state. Otherwise, the nature of the Barium compounds are 

rather similar to the Calcium chalcogenides. The band gaps are around 0.1 Ryd 

for BaS, 0.07Ryd for BaSe and 0.06 Ryd for BaTe. These agree well with LPAW 

calculations on BaSe and BaTe by Wang et al (1985) as well as ASW calculations 

by Carlsson and Wilkins (1984) and LMTO calculations of Kalpana et al (1994). 

The band structure and partial density of states for the Strontium chalcogenides 

are shown in figures (2.7)-(2.8). The ionicity increases, bonding becomes weaker 

leading to lower bulk moduli, the band gap diminishes. This makes it possi- 

ble to metalize some of these compounds under pressure (Kalpana et al (1994)). 

For most of these compounds the bulk modulus estimates are better with the 

LMH exchange-correlation rather than in VBH. Though it appears that the VBH 

exchange-correlation is better for estimates of the lattice parameter, this is doubtful, 

for LDA based calculations should overestimate the lattice parameter, which LMH 

consistently does. Our view is that the LMH is a more reliable approximation for 

the exchange-correlation as compared with the VBH. 

The variation of the total energy with the lattice parameter showing minimum 

at the equilibrium lattice parameter is shown in the figures (2.11). The curvature at 

the minimum is related to the bulk modulus through the relation described earlier 

in the chapter. The variation of the bulk moduli across the compounds is shown 

in table (2.1). The general trend is clear : bulk modulus decreases as we go from 

BeX to SrX (X is any S, Se or Te) and also as we go from YS to YTe (Y is any 

Be,Mg,Ca,Ba or Sr). This is consistent with the decrease of bonding strength and 

increase of equilibrium lattice parameter. All the compounds are indirect (F-X) gap 
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semiconductors. The band gap also decreases as we go from Be to Sr and in a single 

alkaline-earth compound from S to Te. Of all these compounds MgTe has a rather 

different behaviour, which we shall discuss in the following chapters. 
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C h a p t e r  3 

Study of pressure induced phase transition in 

MgTe 

3 .1  I n t r o d u c t i o n  

In tile earlier chapter we have discussed the high pressure behaviour of alkaline- 

earth chalcogenides R X  (R = Be, Mg, Ca, Sr, Ba; X = S, Se, Te). Under normal 

conditions these compounds crystallize in the rocksalt structure (B1) with sixfold 

coordination. Chalcogenides of Ca, Sr and Ba undergo structural phase transition 

from B1 to B2 under pressure. Exceptions are the Be chalcogenides and MgTe. 

Recently, pressure induced phase transition from the B3 to the NiAs (BS) has also 

been observed for BeX (LuG et al (1994)), MgS (Pc=37.7 GPa) and MgS (Kalpana 

et al (1994)) (Pc=31.7 GPa). MgTe is the only member of the series which seems 

to behave differently. Further, we note that while CaO shows B1 to B2 structural 

transition at a relatively low pressure of 61 GPa (Jeanloz et al (1979)) and CaTe 

transforms from the B1 to the B2 phase at even lower pressures of 33 GPa (LuG 

et al (1994)), MgO is stable in the B1 structure even up to 600 GPa (Jackson and 

Gordon (1988)). 

It should be interesting to study the high pressure behaviour of MgTe so that 

it may help us to understand whether the anomalously high transition pressure 

1The contents of this chapter has been published in Basu Chaudhuri, Pari, Mookerjee and 

Bhattacharya Phys. Rev. B60 11846 (1999) 
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associated with MgO is also followed by MgTe. 

Experimental structural studies on MgTe are less frequently reported mainly 

because of its high hygroscopicity (Kuhn et al (1971)). The pioneering works by 

Zachariasen (Zachariasen (1927)) and Klemn and Wahl (Klemm and Wahl (1951)) 

showed that MgTe crystallizes (high temperature phase) in the hexagonal wurtzite 

structure which has been widely accepted and experimentally reproduced (Kuhn 

et al (1971), Parker et al (1971)). But recently the first principles local-density 

formalism (LDF) based calculations on MgTe by Yeh et al and Van Camp and Van 

Doren (1996) predicted the ground state of MgTe to be B8. Recent high pressure 

energy-dispersive X-ray diffraction ( E D X D )  experiments by Li et al (1995) on MgTe 

in a diamond anvil cell indicated pressure induced structural phase transition from 

the wurtzite to the B8 structure at pressures of ~ 1-3.5 GPa and also suggested 

that the thermodynamic stable phase at normal temperature and pressure to be B8 

in support of the earlier theoretical predictions (Yeh et al (1992), Van Camp and 

Van Doren (1996)). They have also suggested that the system may go from the B8 

phase to the B2 or the PH4I and then to the B2 structure at a pressure much higher 

than 60 GPa. However, no theoretical calculations have been performed for these 

structures so far. The work presented in this chapter has been aimed to understand 

the pressure behaviour of MgTe and identify the pressure induced structural phase 

transformations. 

In this chapter we shall examine behaviour of MgTe under pressure using the 

tight binding linear muffin-tin orbital (TB-LMTO)  method (Andersen and Jepsen 

(1984)). The calculations have been performed in the wurtzite, B8, B2 and PH4I 

structures. Our calculations also show that the ground state phase of MgTe to be 

B8. Our results for the B8 and wurtzite are in excellent agreement with the earlier 

theoretical calculations. Our calculations indicate that MgTe is semi-conducting in 

the B8 and wurtzite phases and metallic in the other two phases. The calculated 

semi-conducting gap (Eg) for the wurtzite structure at its equilibrium is in good 

agreement with the earlier results (Chadi (1994), Parker et al (1971)) and however 

we find the gap to be very small for the B8 phase. Interestingly we have observed, 

for the first time, transition from the B8 to the B2 structure with pressure. 
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3.2 Resu l t s  and Discuss ion  

We have resorted to the TB-LMTO method within the framework of density func- 

tional theory(DFT) (Hohenberg and Kohn (1964)) in its local density approximation 

(LDA) (Kohn and Sham (1965)) to obtain the electronic structure, total energies 

and its variation with volume of MgTe in the wurtzite, B8, B2 and PH4I phases. 

The exchange-correlation lJotential has been chosen to be that of the yon Barth 

and Hedin scheme (yon Barth and Hedin (1972)). We have taken the ground state 

volume V0 to be 674.1797 (a.u. s) for all the structures under consideration and 

c/a=1.623, 1.633, 0.729 for B8, wurtzite and PH4I structures as a guideline from 

Van Camp and Van Doren (1996). 

To understand the ground state properties of MgTe in the stable phase and also 

identify whether there is a pressure induced structural phase transition as well as 

an insulator-metal transition as suggested by Li et al (1995), we have performed 

electronic structure and cell volume variation of the total energy calculations for the 

wurtzite, BS, B2 and PH4I phases. 

The calculated total energy/primitive cell as a function of reduced volume for 

the BS, wurtzite, B2 and PH4I phases are shown in figure 3.1. The total energies 

in these phases were fitted to the Birch equation of state (Birch (1978)) to obtain 

the pressure-volume relation (P = dE/dV). Figure 3.2 represents the variation of 

P with V/Vo. 

The structural phase stability is determined through the Gibb's free energy (Born 

and Huang (1954)) (G = Etot + PV + TS). As our calculations are done at tem- 

perature T = 0, G and the enthalpy (H) are the same. Thus a stable structure 

at a given P corresponds to a minimum value in H and the transition pressure 

(Pc) is calculated from the crossing point of the enthalpies for the'two phases. The 

calculated equilibrium lattice parameters in different phases, cohesive energy (Ecoh) 

being the energy required to form the solid from the constituent atoms, B0, Pc and 

the volume reduction at the transition from the B8 to B2 phase are given in Table 

I and are compared with the earlier literature. 

From figure 3.1, it is clear that the B8 phase is the stable ground phase of MgTe, 

in very good agreement with the earlier theoretical and experimental results (Yeh 
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et al (1992), Van Camp and Van Doren (1996), Li et al (1995)). 

It can be seen from the figure 3.1 that the wurtzite phase stabilizes at V/Vo > 

1.293, remains to be stable only at the expanded lattice (V/Vo>I.2), and structural 

transition from this phase to the B8 occurs just below V/Vo-I.2, in agreement with 

tile prediction of Li et al (1995). It is to be noted that  Van Camp and Van Doren 

(1996) have done the calculations for the structures mentioned above up to only a 

reduced volume of 0.60. In the low V/Vo regime, the total energy of Ph4I is slightly 

higher than that  of BS, but lower than the other two phases. However, just  before 

the B8 to B2 phase transition, the B2 phase becomes lower in energy than that  of 

the Ph4I. We have calculated the structural transition pressure, from the B8 to 

B2 phase as Pc=190.8 GPa corresponding to a reduced volume of 0.479 in the B8 

phase, where the enthalpy of' the both phases are the same. This is consistent with 

the experimental predictions (Li et al (1995)) of >> 60 GPa. Unlike the case of MgO, 

which remains stable in the B1 phase till 600 GPa, MgTe shows structural transition 
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a(wurtz) 

c(wurtz) " 

Bo(wurtz) 

a(B8) 
 (B8) 

Bo(B8) 

Ecoh(B8) 
a(B2) 

Bo(B2) 

a(PH4I) 

c(PH4I) 

Bo(PHj)  

V (BS)/Vo 
B2) /Vo 

AV% 

Pt 

Expt." 

8.542 

13.946 

<0.6 

>60 

MgTe 

Present Pseudo b 

8.513 

13.902 

7.827 

12.711 

Pseudo c 

8.510 

13.899 

41.74 

7.822 

12.698 

55.70 

0.535 

6.906 

53.22 

9.667 

7.045 

58.04 

0.479 

0.465 

2.92 

190.8 

8.889 

13.70 

37.30 

7.750 

12.661 

51.40 

Table 3.1: The calculated lattice parameters (a,c) in a.u., bulk modulus (Bo) in 

GPa, Ecoh, transition volumes (V1 /Vo ) and (V2/Vo) and transition pressure (Pc in 

GPa) for MgTe in different phases. 

Reference Zachariasen (1927). 

b Reference Yeh et al (1992). 

c Reference Van Camp and Van Doren' (1996). 
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and the value of Pc is much higher than that observed for MgS and MgSe (37.7 and 

31.7 GPa) (Kalpana et al (1994)). From figure 3.2 it is clear that the calculated 

P - V relation is in excellent agreement with that of the experiment (Li et al (1995)) 

We predict the volume reduction for the B8 to B2 structural transition to be 2.92% 

(see table I). Our calculations show that the Eg decreases from the ground state as 

a function of pressure and before the structural transition there is a semi-conductor 

to metal transition (indirect band overlap metalization) due to the overlap of the 

chalcogen Te-p valence band at the high symmetry point M with that of the Mg-s 

conduction band at the F point, The calculated value of metalization pressure is 145 

GPa (V/Vo ~ 0.52). Table I clearly shows that our calculated equilibrium lattice 

parameters and B0 for the B8 and wurtzite phases are in very good agreement with 

the earlier calculations and experiment. In the same table we have given the Ecoh 

for the B8 phase and also the equilibrium lattice constants and B0 for the B2 and 

PH4I phases. 
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We have calculated the cell volume ratio of B8 to wurtzite structure to be 77.16% 

which is in excellent agreement with earlier reported experimental value of 77.8% 

(Li et al (1995)). Figure 3.3 shows the electronic band structure of MgTe in the 

B8 phase at V/Vo=I.O. The bottom most two bands are predominantly due to the 

Te-s states, the bands above these are due to the Te-p states and the unoccupied 

conduction bands are due the Mg-s, p bands. One can also observe from this figure 

that  MgTe is a semi-conductor as there is an indirect insulating gap (Eg) of about 

0.775 eV, between the high symmetry f~ points F and K and which occurs between 

the Te-p and Mg-s bands. This value is very much smaller than that  of 3.47 eV, 

calculated by extrapolation (Parker et al (1971)) and other experimental values 

3 to 3.3 eV of Gromakov and Partala (1969) and 4.7 eV of Inuoe (1969) (high 

temperature measurements). Such an underestimation is quite common with LDA, 

but there is no experimental value available for comparison in the B8 phase. In the 

wurtzite phase, our calculations predict MgTe to be a wide-gap semiconductor with 

E~j=2.5 eV. 



Chapter 4 

A study of MgTe doped with transition metals 

Mn, Fe, Co, and Ni 

4.1  I n t r o d u c t i o n  

There exists extensive literature on II-VI compounds doped with transition met- 

als (M's), specifically for M = M n ,  Fe, Co, Ni  (Furdyna (1988), Twardowski (1990), 

Dicarlo et al (1990), Wu et al (1989), Lawniczak-Jablonska et al (1996)). These 

compounds belong to a special class of materials, called diluted magnetic or semi- 

magnetic semiconductors (DMS's),  classified between non-magnetic and magnetic 

semiconductors. The properties of DMS's  are different from those of the host II-VI 

compounds, mainly due to the substitution of the group-II metal by a magnetic 

ion (M), which occurs in the cation sublattice. Although M atoms differ from the 

group II elements by the fact that their 3d shell is only partially filled, they can 

contribute their 4s 2 electrons to s-p s bonding, and can therefore substitutionally 

replace the group II elements in the II-VI tetrahedral (s-p s bonding) structures. 

The narrow partially filled M-3d bands (strong correlation) are the causes for the 

special properties. Hybridisation of M-3d states with the host II-VI semiconductor- 

sp band states changes the band structure and gives rise to electronic and magnetic 

properties of physical and technological interest. The semiconductor MgTe is both 

of technological and scientific importance. MgTe is the end point of Mg~Cdl_xTe, 

MgxMnl_~Te and MgxZn~_xTe ternary systems all of which are promising opto- 

electronic materials (Waag et al (1993), Wang et al (1993), Wang et al (1994)). 

In this chapter we also investigate the ground state properties of Mg~_~MxTe 
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systems using tight binding linear muffintin orbital method (TB-LMTO) method 

(Andersen and Jepsen (1984)). Our primary interest is to understand the effects 

due to the filling of 3d bands in M, when stepping up from Mn to Ni with different 

concentrations. For this we have made systematic electronic structure calculations 

for MgTe with a large supercell in which one or two atoms are substituted with 

Mn, Fe, Co, Ni. Our calculated local magnetic moments for the magnetic atoms 

are consistent with Hund's rule perhaps due to the ionic nature of the system. 

Howcver, MgTe doped with Mn, Fe and Co for 25% substiution appear to be 

metallic. This may be due to smaller exchange and crystal field splits for the case of 

Mn though it has a half filled d states (3d 5) and in addition the failure of SDFT 

to lift the degeneracy present in the down spin t2g (one up spin t2g and eg are filled 

for the high spin configuration) of 3d bands for Fe and Co. Our calculations also 

show that the Ni doped systems are nonmagnetic (note that Ni itself is a weak 

ferromagnetic metal) metals. It is to be emphasised that there are no experimental 

studies available in the literature, to our knowledge, to compare our results with. 

4.2 Resu l t s  and Discuss ion  

The TB-LMTO-ASA method within the frame.work of density functional theory 

(DFT) (Hohenberg and Kohn (1964)) in its local density approximation (LDA) 

(Kohn and Sham (1965)) has been used to obtain the electronic structure, to- 

tal energies and its variation with volume in B8 structure. In an earlier chapter 

(Basu Chaudhuri et al (1999)) we have shown that the normal pressure ground 

state structure of MgTe is the B8. We have used 3s,3p, 3d for Mg, 4s, 4p, 3d for 

M(M = Mn, Fe, Co, Ni) and 5s,5p,5d for Te as the valence states. We have taken 

the ground state volume V0 = 674.1797 (a.u. s) and c/a= 1.623, as a guideline from 

Van Camp and Van Doren (1995). 

For the doping studies, we have constructed a supercell with hexagonal symmetry 

(space group P3ml), by doubling the B8 unit cell along the z-axis. In this we have 

replaced one (two) Mg atom by one (two) M atom without breaking the symmetry 

of the atomic positions. We have introduced space filling empty spheres maintaining 

the same symmetry for the loose packing. 
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Figure 4.1: The total density of states of singly substituted MgTe with (top) Mn 

and Fe (bottom) Co and Ni. 
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The calculated ferromagnetic total density of states (DOS) per primitive cell for 

the cases of single and double substitution of M = Mn, Fe, Co and the same for 

the paramagnetic cases of M = Ni are shown in figure 4.1. Our calculated total 

energies for the M = Mn, Fe, Co doped systems for both the single and double 

substitutions favour the ferromagnetic phase (high spin configuration). 

For the Ni doped systems, our total energy calculations clearly favour the para- 

magnetic phase (low spin configuration) as the ground state. Further, the calculated 

local magnetic moment for the Ni ion in the MgTe matrix is zero though by Hund's 

rule it could have had as high as 2 PB, due to the left out unpaired two spins in the 

ionic system. This is convincing that Ni by itself is a weak ferromagnetic solid. 

We have calculated the cohesive energy per formula unit for all the cases and they 

are 8.589, 7.930, 7.807, 7.648 e V for the Mn, Fe, Co, Ni systems respectively. The 

decreasing trend in this values reflects the fact of moving away from more than half 

filling. The calculated local magnetic moment for the singly substituted Mn, Fe, 

Co systems are 3.899, 2.584, 1.100,17. 8 respectively and for the doubly substituted 

they are slightly less. These values and the decreasing trend are in accordance with 

the Hund's rule. 

If the two magnetic atom substitute Mg in a single unit cell with Mn, they have 

almost the identical values of magnetic moment of about 3.751 #B. The difference 

between the local moment of the two magnetic ions increases by about 0.1 #B for Fe 

with a higher local moment of 2.185 PB. For Co substituted systems, the difference 

is about 0.25 #s, from the higher value of 0.962 #s. This difference stems from the 

fact that the two magnetic atoms have slightly different environments. 

The physical and chemical properties of the 3d transition metal doped D M S  

materials are primarily governed by the 3d bands as they have the partially filled 

bands and the Fermi energy (EF) passes through them. In general, depending on the 

filling and the crystal fields of these 3d bands, the ground state properties of these 

systems vary. Our previous experience with the perovskite oxides (Pari et al (1995), 

Pari et al (1996)) suggests that the 3d bands split into triplets and doublets under 

the octahedral or tetrahedral oxygen legand fields (in the present cases the magnetic 

ions are having octahedral coordinations of the chalcogen atoms and also two more 

cations) and depending on the fact whether these t2g or eg bands are completely 
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Figure 4.2: The Ferromagnetic total density of states of double substituted MgTe 

with (top) Mn and Fe (bottom) Co arid Ni. 
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Figure 4.3: The ferromagnetic band structure of MgTe singly substituted by Mn 

for (left) up-spin (right) down-spin. In which the horizontal dashed line represents 

the Fermi energy (EF). 

filled or partially filled the ground state has been described as insulating or metallic 

with low or high spin configurations. It is important also to note that  the localised 

narrow 3d bands lead to strong correlation and the values of the Hubbard U and 

charge transfer energy A decide them to be either Mott-Hubbard or charge transfer 

insulators or simply correlated metals. Further we could do our doped calculations 

only within LDA (no non-local corrections are included to account for the many 

body effect) even though these systems could be strongly correlated. 

Figure 4.3 show the ferromagnetic up and down spin band structures of singly 

Mn doped MgTe in the B8 based supercell and the corresponding total DOS is 

given in the top part of figure 4.1. For simplicity we have not given the band 

structures for the rest as the band profile remains the same, instead we have shown 

the density of states for all. Here the bottom most bands are mainly due to the Te-s 

states, the bands just above them are due to Te-p states and the bands in the upper 

part of these p states are admixtures of Mn-d t2g and Te-p bands. The supercell 

construction of course yield d-bands for Mn rather than impurity levels, however 
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Figure 4.4: The band structure of MgTe in the B8 phase at V/Vo=I.0. In which the 

horizontal dashed line represents the Fermi energy (EF). 

the width of these bands are rather narrow and arise mainly due to hybridization of 

the impurity levels with the Te - p bands. 

A comparison of these figures with figure 4.4, shows that  there is a strong Te-p 

Mn-d hybridisation and also the Mn-3d bands lie in the gap between the Te-p 

valence and the cation s conduction bands. It is clear from figures 2(a) and (b) that  

the up spin Mn-d e~ bands are almost completely filled while the down spin t2g 

bands are just started occupying. This means that  the up spin eg and spin down t2g 

are not well separated, implying that  the exchange interaction as well as the crystal 

field effects (split between the triplet and the doublet) are small in these systems. 

One can also see from these figures that  there is a strong Te-p and Mn-d mixing 

and this may be due to the smaller crystal field split. It is clear from these figures 

and the corresponding total DOS plot that  the system is metallic as the EF passes 

through the % bands and also little amount of down spin triplet of the d bands, 

in accordance with the Hund's rule as Mn takes the configuration of 3d 5 in MgTe 

with a charge state of 2+. Figures 4.1 and 4.2 which represent the total DOS, show 

that  all the doped systems are metallic, and the topology for the 25 and 50% are 
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almost the same. These figures also show that there is a strong p - d hybridization 

and also the split due to the exchange and crystal field is very small unlike the 

cases of perovskite oxides (Pari et al (1995), Pari et al (1996)). It is to be noted 

that even the ground state insulating gap of pure MgTe in the B8 is small and after 

doping on par with the works of Albe et al (1998), who have shown that  the gap, for 

nanocrystals, increases, perhaps differ for solids, our LDA based calculations show 

them to be metallic. This we feel to be due to the reason that  LDA is not sufficient 

enough in providing the required exchange split to account for the insulating gap at 

least for the Mn, Fe, Co doped cases. Though there are no available experimental 

works for the ground state of the doped systems, the chemical picture tells that  M 

substituted for Mg of valency 2, will give the 4s electrons to the chalcogen Te atom, 

and therefore the topmost filled level could be the 3d bands. For Mn with high spin 

configuration, all the up spin t2:~ and e~ bands should be filled (half filling) with tile 

3d-5 electrons and therefore the insulating gap would be between the filled up spin 

% and the empty down spin t2q bands. 

For Fe and Co, all the up spin states are filled completely and the EF passes 

through the down spin partially filled t29 bands as evidences from the DOS plots, 

if the correlation effects are taken into account properly that  could have given the 

required energy to lift, the degeneracy present in t, he t2g bands. Thus the metallic 

ground state obtained from the LDA calculations for the Fe and Co systems could 

be due to the reason that  the spin D F T  with LDA is not sufficient enough to lift the 

degeneracy present in the t2g state to open up a gap along with the small amount 

of crystal field splits. 

Our 25% ferromagnetic calculations suggest clearly that  the reason for the metal- 

lic ground state of Mn could be due to the smaller amount of the exchange and 

crystal field splits. Which may in turn be due to the longer Mn-Te bond length 

compared to that  of the M-O-M bond lengths in the perovskite oxides (Sarma et 

al (1995)). 

However, we have repeated the calculations for all the above choices with the 

equilibrium volume and c/a of the wurtzite phase (expansion of about 20% with 

respect to the B8 phase), which shows that  the Mn systems for both 25 and 50% 

doping are insulating with a gap of about 1.5 e V, which is typical of D M S  materials, 
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and other systems are shown to be metallic because of the failure of LDA to lift 

the degeneracy present in the partially filled t2g bands. But the calculated local 

magnetic moments for these cases are almost the same as that  of the actual B8 

phase calculations. 

Our studies on the MxMg1_xTe systems with M - Mn, Fe, Co, Ni clearly shows 

for M = Mn, Fe, Co cases a magnetic (high spin configuration) metallic ground 

state and for the Ni doped system, a nonmagnetic metallic ground state. The 

excha.ngc and crystal field splits for the M-3d states are found to be very small and 

it is so small, irrespective of correlation effects, that  the Mn systems are shown to 

be metallic though it has half filled d band. This we feel to be due to a stronger 

Te-p and M-d hybridisation which in turn due to longer bond lengths. However, 

in the expanded volume and c/a as that  of wurtzite phase, our calculation shows a 

magnetic semi-conducting ground state for the Mn doped systems and for the rest as 

before. Our calculations conclusively show for M = Fe, Co systems that  they could 

be strongly correlated due the narrow 3d bands and requires corrections to LDA to 

lift, the degeneracy present in the triplets to describe the correct ground states. The 

calculated local magnetic moments for the magnetic systems are consistent with the 

Hund's rule. We expect experiments to confirm our theoretical observations. 



Chapter 5 

Disorderd Solids : Introduction to Augmented  

Space and Configuration Averaging. 

5.1 Configuration averaging in disordered systems 

The idea of taking averages over all possible different states of a system is well un- 

derstood and commonplace both in quantum mechanics and statistical physics. At 

finite temperatures different possible states of a canonical ensemble, for example, 

are occupied with Boltzmann probabilities, and observable physical properties are 

averages over the ensemble. Similarly, when we wish to measure a given physical ob- 

servable in a quantum system, the result of the measurement is spread over different 

possible s ta tes  with probabilities given by squared amplitudes of the wave function 

projection onto those states. During the last four decades considerable effort has 

gone into devising methods for carrying out averages of physical observables over 

different configurations realized by disordered systems. Why do we wish to carry 

out such averages and is such a procedure meaningful ? 

The problem is clearly understood if we examine a specific example. An exper- 

imentalist is carrying out energy resolved photoemmission studies on a disordered 

metallic alloy. Varying the frequency of his incident photon and keeping the energy 

window of the excited outgoing electrons reasonably narrow, he can map out the 

density of states of the valence electrons for the alloy. If he carries out the experi- 

ment on ten different samples of the same alloy he should obtain slightly different 

results. The alloy is random and different samples will have different atomic arrange- 

ments of its constituents. Yet, the variation the experimenter sees in the different 

73 
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samples is well within his experimental error bars. What  he observes is an average 

result, averaged over different realizable configurations of atomic arrangements in 

the alloy. The interesting fact is that  he sees the averaged result in a single sample. 

The same is true for other measured properties like the specific heat, conductivity 

and different response functions. 

We note that  all these measured properties are properties global to the system. 

Should there be a difference if we measure local properties with local probes ? 

Take another example of a magnetically disordered alloy AuFe (with < 10% of 

Fe). If we measure the magnetization of a sample it remains zero up to liquid He 

temperatures. Yet, if we carry out a MSssbauer study on the same alloy, there is 

clear indication of a frozen local exchange field at low temperatures, indicating ~hat 

a local magnetization exists. Configuration averaging will be meaningless if we wish 

to look at local properties. Even here, a degree of averaging over the far environment 

is relevant. Although the radioactive Fe atom giving rise to the M5ssbauer spectrum 

sits in different environments in different samples, yet experiments yield a unique 

exchange field distribution. 

Why do we observe configuration averaged results in a particular macroscopic 

sample ? To understand this, we must examine the idea of spatial ergodicity. We 

visualize a macroscopically large system as made up of subsystems, each of which 

resembles a configuration of the system. Spatial ergodicity implies that, in the 

limit of the size and number of these subsystems becoming infinitely large, the 

subsystems of a single sample exactly replicate a11 its possible configurations. A 

global property which averages over the subsystems becomes the same as the average 

over all configurations. 

We can illustrate this by a random Ising model, where magnetic moments, which 

take values +1 and -1 with equal probabilities, randomly occupy siiles of an infinite 

lattice labeled by {R). 

<< mR >> = ( l / N )  Z' R = 0 
R 

Here << >> indicates configuration averaged quantities. Configuration aver- 

aging is a relevant subject of study for disordered systems. We have to be careful 
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Figure 5.1: Partitioning of the system into subsystems illustrating spatial ergodicity 

to ensure that  the assumption of spatial ergodicity remains valid. There are sit- 

uations where this assumption does fail. Chandrasekhar (1960) showed that  the 

intensity of light observed at a point, after it has traveled in a straight line from 

a source through a randomly varying dielectric medium, has interesting properties. 

The variance of the intensity diverges as the distance between the source and ob- 

server increases. In such a situation, average intensity would be meaningless. He 

associated this result with the fact that stars are observed to twinkle intrinsically. 

Kumar and Jayannavar (1985, 1986) used similar arguments to show that,  in one 

dimensional disordered wires of infinite length, averaged resistance is meaningless, 

since the variance of resistance diverges much faster than its mean. Both these re- 

sults are specific to randomness and in disordered systems we have to make sure we 

keep this in mind and talk of configuration averages only in relevant situations. 
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5.2 The Augmented Space Theorem 

5.2.1 Mathematical description of the configuration space 

One of the main conceptual hurdles in understanding the augmented space theorem 

Mookerjee (1973a, b) has been the visualization of the configuration space of a set 

of random variables. Yet the idea is quite common in other fields. A very simple, 

yet essentially non trivial example is that  of the Ising model. Since most readers 

seem comfortable enough with this model, we shall illustrate some of the basic ideas 

behind our description with it. 

The model consists of a set of spins {aR} arranged on a discrete lattice labeled 

by R. Each spin a R can have two possible states or configurations which we can 

denote as I I"R} and I SR}. The collection of all linear combinations of these two 

states : {al J'R} + bl $~}} is called the configuration space of a ,  . It is of rank two 

and is spanned by the states I J'R) and I SR). Let us call this space r 

The set of, say, N spins then have 2 y possible configurations each of which can 

be written as a sequence of m up-states and N-m down-states. The ordering of this 

sequence is crucial, since different orderings correspond to different configurations. 

The number N-m is defined as the cardinality of the configuration and the sequence 

{C} of sites {R4,, R4~,... Ri~ . . .  RiN_~ } where the down-states sit is called the cardi- 

nality sequence of the configuration. For example, take a particular configuration of 

5 spins : I 71525aJ'45~}. It has cardinality 3 and a cardinality sequence {2, 3, 5}. An- 

other configuration I $11"25a$4$5} also has a cardinality 3, but its cardinality sequence 

is {1, 3, 4}. These two configurations are distinct from each other. 

Note that  the cardinality sequence uniquely describes the configuration and is a 

very convenient way of labeling the different configurations I{dk}} ( where k=1,2... 

2 N) of the set of N spins. The configuration space (I) is of rank 2 g and can be written 

as a direct product of the configuration spaces of the individual spins. 

r = I I | 1 6 2  
R 

The generalization of these ideas when the spins can have n > 2 states is quite 

straightforward. The configurations of an individual spin can be labeled as IkR), 
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where kR=l ,2 , . . ,  n. The rank of CR is now n. The set of N spins has n N configu- 

rations. The cardinality of the configuration of an individual spin is defined as the 

par t i cu la r  kR and the cardinality sequence uniquely describes a configuration of the 

set of N spins is the sequence {kl, k2 , . . .kg} .  

If we now translate our ideas from spins aR to the random variables eR of the 

Anderson model, we can immediately visualize the configuration space of the Hamil- 

tonian variables {eR}. When these terms have a binary distribution, their configu- 

ration space is isomorphic to the one for a collection of Ising spins. 

Let us now assume that  the variables {~i} are independently distributed and 

the probability densities are given by p(ei). We shall take into account only those 

probability densities which have finite moments to all orders. Physically relevant 

densities almost all fall in this category. Since the probability densities are positive 

definite functions, we can always write them as spectral densities of a positive definite 

operator as follows : 

p( i) = (-1/~) ~m (~l((ci +~O)I 
= + 

_ MR)- l l0 /  

(5-1) 

If r has a binary distribution, taking the values 0 and 1 with probabilities x and 

y-- l -x,  then a representation of M is 

(x 
We may interpret this in terms of the configuration space CR introduced earlier. 

The configuration space is spanned by the states 10) and I1), which are eigenstates 

of MR with eigenvalues 0 and 1. This is rather similar to the description in quantum 

mechanics, where an observable taking a random set of values is associated with an 

operator whose eigenvalues are the possible values observed and the states of the 

system in which the observable takes a particular value corresponds to the related 

eigenstate. The operator Mn in the configuration space Cn will be associated with 

the random variable ~i. The representation of MR shown above is in a different 

basis:  
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I{R}) = (v~ I0) - v/~ II)) 

The reason for choosing,this particular basis will become clear later. The state 

10) will be called the average state of the system. 

For a general probability distribution, we may always find the representation of 

the operator MR in a similar basis by first expanding the probability density as a 

continued fraction. 

1 

~ i  - -  a 0  - -  

a l  
o 

Here p(r = ~m g(ei). Since it is a positive definite function with finite 

moments to all orders, P(r can be expanded as a convergent continued fraction. 

The required representation of the matrix Mi is given by (0 00 / 
bl al b2 0 . . .  

0 b2 a2 b3 . .. 

The average state is defined by 10) = ~k V ~ [  k) where k are the random values 

taken by r with probabilities Xk. The other members of the countable basis In), in 

which the above representation of MR is given, may be obtained recursively from 

the average state through : 

Io) 
b, I1> 

b,~ In) 

= Ir 

= m ~ l o > - a o l O >  
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The close relation of the above procedure to the recursion method described in 

the previous chapter should be noted. This is not surprising, since the projected 

density of states and the probability density are both positive definite and integrable 

functions. Convergence of the continued fraction further requires finite moments to 

all orders in both the cases. 

5 .2.2 T h e  A u g m e n t e d  S p a c e  T h e o r e m  

The augmented space theorem was first introduced by Mookerjee (1973a, b). We 

shall discuss the theorem and its applications in some detail in this section, since it 

will form the basis of the methodology used in the subsequent chapters. 

Let us now consider the average of a well-behaved function f(~i) of s~. By 

definition : 

( ( f ( s i )  >> -- 

Equation (5-3) may be rewritten as : 

f f(ei)p(ei)dei (5-3) 

f(ei) >> = f f(z) g(z) dz << 

The integral is taken over a closed contour enclosing the singularities of g(z) but 

not any of f(z). We assume here that  f(z) is well behaved, in the sense that  it has 

no singularities in the neighbourhood of a singularity of g(z). 
We now expand the function g(z) in the basis of its eigenstates {I/C)} of 114/. 

These may be either discrete or continuous. This expansion can be written as a 

Stielje's integral in terms of the spectral density function p(/C) of Mi 

<< f(~i) )) = 

- -  / o ,  

The second line requires the function to be well behaved at infinity. The ex- 

pression in brackets on the right side of the bottom equation is, by definition, the 
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operator f(MR). It is the same functional of MR a s  f(6i) was of ci. For example, if 

2 then f(MR) is M~ . f(~i) is gi 

This yields the central equation of the. augmented space theorem : 

~ f(ei) >> = (0If(MR)I0) (5-4) 

The result is significant, since we have reduced the calculation of averages to one 

of obtaining a particular matrix element of an operator in the configuration space 

of the variable. Since we have applied the theorem to a single variable alone, the 

power of the above theorem is not apparent. Let us now go back to the Anderson 

model where we have a set of random variables {~i} which we have assumed to be 

independently distributed. The joint probability distribution is given by : 

= (5-5) 
i 

The generalization of the above theorem to averages of functions of the set of 

random variables is straightforward, 

<< f({ei}) >> = (Olf({MR})]O) (5-6) 

All operators in the full configuration space (I) will be denoted by tilde variables. 

The operators MR are built up from the operators MR as : 

MR - I | I |  |  | I |  (5-7) 

This is the augmented space theorem (Mookerjee (1973a, b)). 

If we wish to carry out the configuration averaging of, say, the Green function 

element 

GRR(Z) = (R I (zI - H({eR,})) - I l R )  

The theorem leads to : 

where, 

< < G R R ( z ) > >  = (5-s)  
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R R R I 

The power of the theorem now becomes apparent. The average is seen to be 

a particular matrix element of the Green function of an augmented Hamiltonian. 

This is constructed out of the original random Hamiltonian by replacing the random 

variables by the corresponding configuration space operators built out of their prob- 

ability distributions. This augmented Hamiltonian is an operator in the augmented 

space ~ = 7-/| ~9 where ~ is the space spanned by the tight binding basis and.~ 

the full configuration space. The result is exact. Approximations can now be intro- 

duced in the actual calculation of this matrix element in a controlled manner. The 

augmented Hamiltonian has no randomness in it and therefore various techniques 

available for the calculation of the Green functions for non-random systems may be 

resorted to. In particular we shall show that the recursion method described in the 

earlier chapter is ideally suited for obtaining matrix elements in augmented space. 

Since configuration averaging is an intrinsically difficult problem, we must pay the 

price for the above simplification. This comes in the shape of the enormous rank 

of the augmented space. For some time it was thought that  recursion on the full 

augmented space was not a feasible proposition. However, we shall describe later 

that,  if randomness is homogeneous in the sense that  p(si) is independent of the 

label R, then the augmented space has a large number of local point group and lat- 

tice translational symmetries. These can be utilized to reduce vastly the rank of the 

effective space on which the recursion can be carried out. Recursion on augmented 

space can be done with ease, even on desktop computers. 

5.3 The  recursion m e t h o d  

The recursion method was introduced by Haydock et al (1972) for the study of 

electronic structure for systems without lattice translational symmetery. 

The recursion method is a constructive form of von Laue's theorem in that  it 

expands solutions to the SchrSdinger equation in a sequence of increasingly delo- 

calized functions. Taking lu0/ to be the orbital on which the solutions are to be 
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projected, the recursion method uses the electronic Hamiltonian operator H to gen- 

erate a sequence of orbitals lul>, [u2), . . . ,  lun>,.., which are the successively less 

localized electronic states. These orbitals are related to one another by H according 

to the three-term recurrence relation, 

HIun = anlU,~ + bn+l)Iun+l) + b,~lu,~-l) (5-9) 

where ]u-l> is taken to be zero, and the dependence of these orbitals on position, 

spin and other coordinates has been suppressed. The projection of the solution onto 

lu0>, the projected density of states (PDOS), is the imaginary part of the Green 

function or the resolvent 

Goo(E) = < U o ] ( E I -  H)-l[u0> 

which is expanded as a continued fraction : 

G(E) = 1 

E - ao - b 2 
E - al - 51 

Z - a2 
@ 

D 
@ 

Determination of the parameters {an, b n}  and the properties of the continued 

fraction are discussed below. 

Von Laue's theorem follows from the convergence of the continued fraction, 

namely that  only a few moments of the PDOS determine a few levels of the fraction 

which bound integrals over the PDOS. 

The construction of a three-term recurrence and its solution as a continued frac- 

tion will be carried out numerically. 

5.4 Augmented Space Recursion 

We shall propose a different path to implement the incorporation of the effects of en- 

vironment fluctuation in disordered system. We wish to apply the recursion method, 

described by Haydock in the accompanying section directly on the augmented space 
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without carrying out any mean-field like approximations. We shall describe the 

method in a realistic model for binary alloys. 

5.4.1 The Hamiltonian in augmented space 

The starting point for the augmented space recursion is the most localized, sparse, 

tight-binding Hamiltonian, derived systematically from the LMTO-ASA theory and 

generalize(] to substitutionally disordered random binary alloys : 

^ s  s 
HRL.R,  L, -~- CRLSRR,  SLL , --~ ,..~I~L,JRL,R,L,~_~R, L, 

(~RL = CARLnR + CBL(1 -- nR) 
~ / 2  A 1/2 RL = ( /"RL) ~R + ( /"~L)~/~(1 -- nR) (5-11) 

Here R labels the lattice sites and L=(g m) are the orbital indices (for transi- 

tion metals g <2), CAL C~L and AA L A B ' , RL are the potential parameters of the 

constituents A and B of the alloy, nR are the local site occupation variables which 

randomly take values 1 and 0 according to whether the site is occupied by an A atom 

or not. From the earlier discussion it is clear that the Hamiltonian in augmented 

space/=/consists of replacing the local site occupation variables { n R }  by {MR}, and 

is given by : 

= E ( c f j  + ~c.~J~) | ~,, +... 
RL 

+ E E ((A~),/~i + ~ A ~ )  s~,~,~, ((A~,~,)I/~i + ~AR,~,~,) | r~, 
RL R' U 

where, 

~cR~ = (c, I~ - c f ~ )  
~t,~ = ( ( ~ ) , / ~ _  (AL),/~) 
Other parameters have their usual meaning and I is the identity operator defined 

in the augmented space, /~R is given by: 
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h:/R = x 7)0 + y 7)~ + v r ~  (7~R1 + T~0) (5-12) 

7 )0 and T~ ~ are projection and transfer operators in the augmented space, where 

each site R is characterized by two states labeled 0 and 1, which may be identified 

with the up and down states of an Ising system . The configuration states are 

stored extremely efficiently in bits of words and the algebra of the Hamiltonian in 

the configuration space mirrors the multi-spin coding techniques used in numerical 

works with the Ising model. 

The augmented Hamiltonian is an operator in a much enlarged space �9 = 

7-I @ l-I r (the augmented space), where 7-I is the Hilbert space spanned by the 

countable basis set {IR)} (the real space). The enlarged Hamiltonian does not in- 

volve any random variables but incorporates within itself the full information about 

the random occupation variables. If we substitute for MR, then with the aid of little 

algebra we can show that  the augmented space Hamiltonian contains operators of 

the following types : 

(a) 7)R | I and TRR' | These operators acting on a vector in the augmented space 

changes only the real space label, but keeps the configuration part unchanged. 

(b) VR @ 7~R 1 , 7)R | T ~ "-FRR' | 7~R 1 and TRR' | 7~R, 1. These operators acting on 

an augmented space vector may or may not change the real space label. In 

addition, they may also change the configuration at the  site R or R ~. This 

resembles a single spin-flip Ising operator in configuration space. 

(c) PR|174 1 and TRR,|174 ,1. These operators may change the real space 

label, as well as the configuration either at R or R ~ or both. This resembles a 

double spin flip Ising operator in the configuration space. 

A basis I m) in the Hilbert space 7-/'is represented by a column vector Cm with 

zeros everywhere except at the m- th  position. The inner products are defined as 
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%nCp = 

We may represent this basis by a collection of binary words ( strings of O's and 

l's) As described earlier, the number of l 's  define the cardinality of the basis 

and the sequence of positions at which we have l 's  { C } called the cardinality 

sequence labels the basis . Thus a binary sequence B[{ C}] is a representation of 

the member of the basis in the configuration space. The inner product between the 

basis members is then 

(B[{C}],B[{C}]) = 5({C}, {C'}) 

A careful examination of the operations (a)-(c) defined on the configuration 

space, reveals that  these operations change the cardinality and the cardinality se- 

quence. Since the operations are defined on the bits of words, one can easily employ 

the logical functions in a computer, to define these operations. 

5.4.2 Symmetry reduction of the augmented space rank 

The idea of reducing the rank of the Hilbert space on which the Hamiltonian acts 

during recursion was described by Haydock (1982). It was used extensively by Saha 

(1997), Dasgupta (1997) for applications to disordered alloys. We shall also use 

these ideas in our subsequent work. 

We should note that the recursion basis lunl is generated from the starting state 

lUol by repeated application of the Hamiltonian. If the starting state belongs to an 

irreducible subspace of 7-/then all subsequent recursion generated states will belong 

to the same irreducible subspace. Physically we may understand this as follows : 

the recursion states lunl carry information of distant environment of the starting 

state. For example, lu11, which, apart from the orthogonalization subtractions, is 

essentially Hluol , is a combination of states in the nearest shell with which lu01 

couple via the Hamiltonian. Similarly, lunl is a combination of n-th neighbour shell 

with which lu0} is coupled via the Hamiltonian. If ~ is a point group symmetry 

of the Hamiltonian, then all n-th neighbour shell states which are related to one 

another through the symmetry operator must have equal coupling to lu01. Hence, 

it is useful to consider among the n-th neighbour shell states of which lunl is a 
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linear combination, only those belonging to the irreducible subspace and redefine 

the Hamiltonian operation. 

As an example, take a nearest neighhour s-state Anderson model on a square 

lattice. The starting state I(00)) belongs to the one dimensional representation of 

the square lattice point group. This state then couples with linear combinations of 

states on neighbour shells which are symmetric under square rotations : 

I(Om)} -- (l(Om)> + I(mO)> + I(~0)> + 1(0~)>)/2 

l(11)} = (l(11)> + I(1T)> + I(n)> + I (n' )>) /2 

1( '~ ) }  = (l(n~)> + I(~,n)> + I(n~)> + I(~--~> + . . .  

I(,-~)> + I ( ~ ) >  + I(m~)> + I(m-~>)/(2v% 

If we go up to N shells (if N is large) there are about 2N 2 states in the diamond 

shaped nearest neighbour cluster. However there are only (N2/4 + N/2) ,,~ N2/4 

states with square symmetry. We need only to work in 1/8 of the lattice but attach 

correct weights to the states to reproduce correct matrix elements. This reduction 

is standard in Brilluoin zone integrations in reciprocal space, but not so prevalent 

in real space calculations. 

If II) and I J) are two states coupled to each other via the Hamiltonian, and both 

belong to the same irreducible subspace, and let II1), 112)... IIw,} be states obtained 

by operating on II) by the symmetry group operations of the real space lattice. Wr 

is called the weight associated with the state labeled by  I. If we wish to retain only 

the states in the irreducible subspace and throw out the others and yet obtain the 

same results, we redefine the Hamiltonian matrix elements as follows : 

(IIHIJ) -+ V~II3j(LL')(IIHIJ) 

The factor /3j(LL') requires explanation. The new irreducible basis, which is 

a linear combination of the tight-binding basis , reflects not only the symmetries 

of the underlying lattice, but the symmetry of the starting orbital (spherical if it 

is a s-state, cylindrical if it a p-state and an eg or t2g symmetry if it is a d-state) 

also. This symmetry of the starting orbital prohibits overlap at particular sites. 
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These positions we shall define to be the symmetry positions with respect to the 

overlapping orbitals. These position depends on the L and L ~ content of I and J. If 

the state J is a symmetry position with respect to LU then ~j(LL I) is 0 otherwise 

it is 1. 

( )  

Figure 5.2: Equivalent configurations on a square plaquette 

If disorder is homogeneous, then the cardinality sequence in configuration space 

itself has the symmetry of the underlying lattice. For example, in figure 5.2, since 

the lattice is infinite, the four configurations shown above are equivalent. It is 

obvious they are related to one another by the symmetries of the square lattice. 

Thus in augmented space equivalent states are IR| {g}l and the set I~R |  {~{g}} I 

for all different symmetry operators ~ of the underlying lattice. 

The following table gives us an idea of the reduction of the rank of augmented 

space and the saving in computing CPU time for a simple s-state tight-binding 

Hamiltonian for a binary alloy. 

Once we have defined the reduced Hamiltonian, recursion on the full augmented 
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shells Nf~u Nred tf~u tred 

5 70 17 4.73 1.69 

7 610 103 5.62 1.73 

9 4838 691 6.87 1.77 

Table 5.1: Comparison between system size and CPU time in seconds on a 

HP9000/300 machine for a full square lattice binary alloy and the reduced lattice in 

augmented space 

space with starting state lUo> = [RL| gives the configuration averaged Green 

function directly. The recursion coefficients an and b,~ are generated by 

.fI[Un) = anlUn} + b,~+l[u,~+l) + bn[u~-l} 

an = (~,~I[-'ZlUI~) 

b,~ = (Ur~_~[[tlun } 

The configuration averaged Green function then can be written as a continued 

b~ 
Z - -  a o  - -  

fraction 

<< GRL,RL(Z) >> = 

b~ 
Z -- a I -- 

b~ 
z - aN - b~§ 

For an infinitely large system the continued fraction does not terminate at any 

finite step. The continued fraction approach is meaningful only if we can estimate 

what its asymptotic part would be from a set of initial coefficients. This asymptotic 

part is called the terminator. The theory of convergent continued fractions indicates 

that the asymptotic part determines the essential singularities of the Green function, 

i.e. the band edges and the band weights. The band edges can be determined, first 
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crudely, from a few initial continued fraction coefficients and then refined by noting 

how they converge as we include a few more coefficients. Once the band edges 

e.~:., and emo, x and the band weight w are estimated, the model herglotz function is 

gcncrated as :  

The continued fraction coefficients which yield F(z) are 

&n = (em~x + emin)/2 for all n 

/~n = (em~ - emin)/4 for all n 

Luchini and Nex (1987) suggested that  rather than butt-joining of the terminator 

coefficients to the first nl exactly calculated coefficients, we splice them it smoothly 

as follows: 

an 

~,,~ = 1/2 {(1 - sin{d(n + r + (1 + sin{5(n + r 
n < n l  

nl  < n < n2 

n2 < n  

bn 

[~,~ = 1 /2{ (1 - s in{5 (n+r  + (l+sin{5(n+r 
^ 

bn 

n < n l  

nl  < n < n2 

n 2 < n  

where (~ = 7r/(n2-nl) and r = -(nl+n2)/2.  

We now proceed to obtain run two further recursions. The first one obtains two 

sets of orthogonal polynomials corresponding to the three term recursion : 

p~+l ( z )  = (z - a~)pn(z )  - b~P~_l(z)  

Q~+l ( z )  = ( z -  an)Qn(z )  - b~Qn- l ( z )  
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where Pl(z) - 0 = Qo and P0 = 1 = Q-1. 

The second one, starts with a state I0 > - F(z) and obtains a set of coefficients 

{ % ,  5~,} f rom:  

where the inner product is defined by a union of Gauss-Chebyshev quadrature : 

(fig) = ~ w J ( a i ) g ( a i )  
i 

with 
7 r w  

wi - sin2~i 
n + l  

~ = ai + (1 - c o s ~ ) ( e . ~  - e ~ ) / 2  

ilr 
n + l  

From these continued fraction coefficients, exactly as above, we generate two sets 

of orthogonal polynomials 

The terminator is then 

S,~_2(z) -  F(z)R,~2_,(z ) (5-13) 
T ( z )  = 52 

~2-, [S~2-3(z) - F(z)R~2-2(z)] 
Since F(z) is a herglotz function and R~(z) and Sn(Z) are polynomials, the above 

equation shows that the terminator T(z) is also herglotz. The Green function is 

then given by 

G(z) = Qr~2-2(z) - b~2_IT(z)Q,~2-3(z) (5-14) 
P,~2_~(z) - b ~ 2 T ( z ) P , ~ . 2 ( z )  

There is an extensive literature on the construction of terminators (Luchini and 

Nex (1987)). We refer the reader to these for further mathematical details. All ter- 

minators are herglotz and require no further input other than the first nl continued 

fraction coefficients. 



Chapter 6 

Electronic structure and 

bcc Fe alloys 

magnetism in disordered 

6.1  I n t r o d u c t i o n  

Iron, being one of the ferromagnets among the late transition metals, have drawn 

considerable attention for investigating its magnetic properties. Apart from studies 

on elemental Fe which include the studies on structural (Ishikawa (1978)) and mag- 

netic phase stability (Andersen (1977), Pinski et at (1986), Hiraki (1989))there are 

numerous investigations on magnetism in Fe based ordered and disordered alloys, 

both theoretically and experimentally. The experimental investigations have pro- 

vided a variety of informations about the magnetic properties of these systems like 

variation of magnetisation with band filling (Shull (1955), Bardos (1969)), moment 

distribution in dilute Fe alloys in low (Collins (1965)) as well as in finite temperatures 

(Child (1976)), local environmental effects on magnetic properties (Radhakrishnan 

and Livet (1978), Kajzar and Parette (1980)), spatial distribution and thermal vari- 

ation of hyperfine fields (Arp et al (1952), Johnson et al (1963), Koi et al (1964), 

Lutgemeir and Dubiel (1982)), concentration dependence of high field susceptibil- 

ity (Stoelinga (1966)), low temperature specific heat (Cheng et al (1960), Schroder 

(1962)) and magnetic phase stability leading eventually to magnetic phase diagrams 

1The contents of this chapter has been published in Ghosh, Sanyal, Basu Chaudhuri and Mook- 

erjee, Eur. J. Phys. B23 455 (2001) 

91 



Chapter 6. Electronic structure and magnetism in disordered bcc Fe alloys 92 

(Van Baal (1973)). 

The earlier explorations on theoretical side started depending on various models 

of band structure calculations (Hasegawa and Kanamori (1971), Jo (1982)). Though 

these calculations were successful to certain extent in explaining the experimental 

observations, they suffered from the drawback of having too many adjustable param- 

eters which limit the reliability of the results. But, with the recent progresses in first 

principles electronic structure techniques the possibility of predicting and explaining 

the properties of magnetic alloys efficiently and accurately has increased quite a lot. 

In recent times there have been substantial amount of investigations on Fe based 

alloys using various first principles techniques which have been able to throw lights 

on different aspects of magnetism in both ordered and disordered phases overcoming 

the limitations of experiments and earlier model calculations (James (1999), Burke 

(1983), Ebert et al (1990), Martinez-Herrera (1985), Asano et al (1978), Akai (1993), 

Bluegel (1987), Turek (1994), Paduani (1998), Kasper (1983)). In this chapter, we 

aim at a systematic study of electronic structure and magnetic properties of substi- 

tutionally disordered C%Fel_x, Cr~Fel_x and MnxFel_~ alloys using self consistent 

TBLMTO-ASR technique. As a pure element, bcc iron is a ferromagnet whereas 

bcc chromium is a weak noncommensurate antiferromagnet, manganese has a very 

complicated crystal (unit cell of 58 atoms) and magnetic structures and cobalt is a 

ferromagnet. This naturally leads to the appearance of many interesting magnetic 

configurations in these alloys. For FeCr, iron atoms stabilize the commensurate anti- 

ferromagnetic (B2) order at Cr-rich side (x>0.8) although CrxFel-x with x>0.8 are 

ferromagnets and stabilize in bcc lattice (Kulikov and Demangeat (1997), Fawcett 

(1994), Furuska (1986)). In case of MnFe alloys, ferromagnetic phase is stable only 

upto x=0.2 and the crystal stabilises in bcc lattice. For x>0.2, several phases with 

anti-ferromagnetic ordering get stabilized (Endoh (1971)). In FeCo alloys, however, 

the ferromagnetic phase is stable for the full range of concentrations and the crystal 

too stabilises in bcc. All these systems exhibit some unusual and interesting mag- 

netic properties. For these reasons, they have been thoroughly investigated. But, to 

our knowledge, no systematic studies together on these three systems has been done 

so far though they are the four successive members on the same row of periodic 

table. This motivated us to perform a systematic investigation of these systems 
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to have a deep understanding of the properties of transition metal alloys. In this 

work, we have restricted ourselves only to ferromagnetic phases of these systems. 

Moreover, no chemical clustering or short-range order effects have been taken into 

account. 

6.2 Theoretical  Details 

To study these alloys we will use the methodology of the augmented space recursion 

(ASR) technique (Mookerjee and Prasad (1993), Saha et al (1994), Sanyal et al 

(1998)) in the first principles framework of tight-binding linearized muffin tin orbital 

theory (Andersen et al (1985)). Extensive details of the description of the effective 

augmented-space Hamiltonian have been given in an earlier chapter (Biswas et al 

(1995)). Here we shall quote the key results of generalised TBLMTO-ASR. 

H ?,1/2 c/~ ?,1/2 -r" 
= E~R~R~ + E E"R~oR~,~,~,"~,~,,~,~'~' 

RL RL R I L I 

= + ( c , I L  - 

A1/2 i AB1/2 [ A A 1 / 2  AB1/21 
RL --  " ' R L  Jr \"RL - - ' - ' R L )  •R (6-1) 

ttere P R L  and "]"RL,R'L' are projection and transfer operators in the hilbert space 

spanned by the tight binding basis IRL) and nR is a random occupation variable 

which is 1 if the site R is occupied by an atom of the A type and 0 if not. C~L and 

A~L are potential parameters describing the scattering properties of the constituents 

(Q=A, B) of the alloy and  S~RL,R,L , is the screened structure constant describing the 

geometry of the underlying lattice. The augmented space hamiltonian replaces the 

random occupation variable by operators MR of rank 2. For models without any 

short-range order 

MR = mT~# + (1--m)'P~ + ~/m(1-m)('Tt~+'T~) 

11"> = (v~to> + ~VT-G-xlI>) 

t,b> -- ( ~1  - xlO> - v ~ l l > )  
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The recursion method then expresses the Green functions as continued fraction 

expansions. The continued fraction coefficients are exactly obtained upto eight levels 

and the terminator suggested by Luchini and Nex (Luchini and Nex (1987)) is used 

to approximate the asymptotic part. The convergence of this procedure has been 

discussed by Ghosh et al (Ghosh et al (1997)). The local charge densities are given 

by : 

/ , E p  
p~(r) (-1/lr)C3m dE << LL~ ,r, (6-2) 

L - 

Here A is either A or B. The local magnetic moment is 

= fr<Rws d3r -- 

The Curie temperature Tc can be calculated using Mohn-Wolfarth model Mohn 

and Wohlfarth (1987) from the expression 

T~ Tc 1 = 0 
T~2 + TsF 

where, T~ is the stoner Curie temperature calculated from the relation 

// (I(EF)} N(E) --~ dE = 1 (6-3) 
O0 

(I (EF)) is the concentration averaged Stoner parameter. The parameters of pure 

elements are obtained from the earlier calculations (Janak (1977)), N(E) is the den- 

sity of states per atom per spin (Ounnarson (1976)) and f is the Fermi distribution 

function. TsF is the spin fluctuation temperature given by, 

m 2 
Tsf  -- (6-4) 10kB( 0) 

(Xo} is the concentration weighted exchange enhanced spin susceptibility at equi- 

librium and m is the averaged magnetic moment per atom. Xo (pure elements) is 

calculated using the relation by Mohn (Mohn and Wohlfarth (1987)) and Gersdorf 

(Gersdorf (1962)): 

X~ - 2#~ 2NC(Er.) + 2N4(EF) I 
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I is the stoner parameter for pure elements and N~(EF) and N'~(EF) are the 

spin-up and spin-down partial density of states per atom at the Fermi level for each 

species in the alloy. 

6.3 Calculat ional  Deta i l s  

For the calculation of the component projected averaged density of states of the 

ferromagnetic phase we have used a real space cluster of 400 atoms and an aug- 

mented space shell upto the sixth nearest neighbour from the starting state. Eight 

pairs of recursion coefficients were determined exactly and the continued fraction 

terminated by the analytic terminator due to Luchini and Nex (Luchini and Nex 

(1987)). In a paper Ghosh et al (Ghosh et al (1997)) have shown the convergence 

of the related integrated quantities, like the Fermi energy, the band energy, the 

magnetic moments and the charge densities, within the augmented space recursion. 

The convergence tests suggested by the authors were carried out to prescribed ac- 

curacies. We noted that at least eight pairs of recursion coefficients were necessary 

to provide Fermi energies and magnetic moments to required accuracies. We have 

reduced the computational burden of the recursion in the full augmented space by 

using the local symmetries of tile augmented space to reduce the effective rank of 

the invariant subspace in which the recursion is confined (Saha et al (1996)) and 

using the seed recursion methodology (Ghosh et al (1999)) with fifteen energy seed 

points uniformly across the spectrum. 

We have chosen the Wigner-Seitz radii of the two constituent atoms in such 

a way that the average volume occupied by the atoms is conserved. Within this 

constraint we have varied the radii so that the final configuration has neutral spheres. 

This eliminates the necessity to include the averaged Madelung Energy part in the 

total energy of the alloy. The definition and computation of the Madelung Energy 

in a random alloy had faced controversy in recent literature and to this date no 

satisfactory resolution of the problem exists. Simultaneously we have made sure 

that the sphere overlap remains within the 15% limit prescribed by Andersen. 

The calculations have been made self-consistent in the LSDA sense, that is, at 

each stage the averaged charge densities are calculated from the augmented space 
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recursion and the new potential is generated by the usual LSDA techniques. This 

self consistency cycle was converged in both total energy and charge to errors of 

the order 10 -5. The exchange-correlation potential of Von Barth and Hedin has 

been used, s, p and d orbitals were used to construct the basis functions and scalar 

relativistic corrections were included. We have also minimized the total energy 

with respect to the lattice constant. The quoted results are those for the minimum 

configuration. In these calculations, any lattice distortions due to the size differences 

between the two constituents has been neglected. 

6.4 Resu l t s  and Discuss ion  

In our approach we emphasize on interrelations of magnetism and charge transfer 

behaviour. While describing magnetic properties of alloys one has to always keep 

in mind the role of charge transfer. Since in our calculations we have maintained 

local charge neutrality, we have to deal with the question of strong variation of 

magnetic moments. Within the itinerant electron theory of magnetism this can be 

understood in terms of a redistribution of local electronic charge either between two 

spin directions. Together with Coulomb interaction which determines the positions 

of atomic d levels of the constituents and thus the charge transfer in case of a 

transition metal alloy, magnetic exchange and hybridisation play very important 

role in determining the magnetic properties. This has already been observed in 

certain cases (Richter (1988), Schwarz (1982)). Here also we will try to explain the 

variations in magnetic properties of the three systems considering these facts. 

These facts can be expressed in a more quantitative form using d-orbital potential 

parameters CdQo obtained from TBLMTO for both alloy components (Q=A, B) and 

for both spin directions (a=J', $). These quantities are equivalent to the atomic d 

levels. 

The spin dependent diagonal disorder in a random binary alloy AxBl-x can be 

defined as Turek (1997) , 

The local exchange splitting can be defined as Turek (1997), 

(6-5) 
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AQ -- C Q - C~ (6-6) 

In our discussions we will show that the behaviour of these quantities determine 

the magnetic properties of the alloys. 

Figure (6.1) shows the compositional dependence of local and average magnetic 

moments for CoxFel-x. The filled triangles denote the average moments while the 

filled circles denote Fe moment and filled squares denote Co moments. The open 

triangles denote the experimental values of average moment (Bardos (1969)) while 

the open circles denote experimental Fe moments (Collins and Forsyth (1963)) and 

the open squares denote experimental Co moments (Collins and Forsyth (1963)). It 

is clear that our results agree well with the experiments, in particular the qualitative 

trend of local as well as average magnetic moments. The results suggest that the 

Fe moment increases rapidly with increasing Co content upto x=0.3 beyond which 

it tends towards a saturation while the Co moment remains almost constant for 

the whole range of concentrations. As a result, the average magnetisation reaches 

a maximum at 30% of Co beyond ehich it starts decreasing. Similar behaviour has 

been observed in previous studies using LCAO-CPA (Richter (1988)) and LMTO- 

CPA (Turek (1994)). 

This nonmonotonic variation of average magnetisation can be explained from 

the variation of local number of electrons (Figure 6.2) and density of states (Fig- 

ure 6.3). In this case, a transition from weak ferromagnetism (incompletely filled 

majority d band) for Fe-rich side to strong ferromagnetism (majority d band com- 

pletely filled) for alloy with a higher Co content (x>0.3) is seen. The initial increase 

of alloy magnetisation corresponds to a continuous filling of majority bands while 

the minority bands remain almost constantly occupied. The linear decrease of alloy 

magnetisation with increasing x for x>0.3 reflects a strong ferromagnetic region in 

which majority bands are fully occupied whereas the minority bands accommodate 

more electrons with increasing Co content.The filling of majority band upto x=0.3 

mainly occurs due to incompletely filled majority d band of weak ferromagnet Fe 

(Figure 6.2 (b)) while the rise in the minority band filling beyond x=0.3 is essentially 

due to a fall in Fe minority electrons and an almost constant nature of Co minority 
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Figure 6.1: Partial and averaged magnetic moments (in Bohr-magneton/atom) vs. 

concentration of Co for CoxFel_= alloy. The solid line with up triangles represents 

calculated averaged values, the solid line with filled circles represents calculated Fe 

moments, the solid line with filled squares represents calculated Co moments. The 

open up triangles are the experimental values of average moments, the open circles 

are the experimental Fe moments and,the open squares are the experimental Co 

moments. 
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Figure 6.2: (a) represents average number of valence electrons for both spins vs, 

concentration of Co for CoxFel-x alloy. The up triangles are for spin-up electron 

number and the down triangles are for spin-down electron number. (b) represents 

number of electrons at Fe site for both spins vs. concentration of Co. The up 

and down triangles stand for up and down spin electrons respectively. (c) represents 

number of electrons at Co site for both spins. The symbols represent identical things 

as (a) and (b). 
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Figure 6.3: Spin projected partial and averaged densities of states/atom of Co=Fel_= 

alloy. The various panels are for different concentrations of Co- (a)10% (b)20% 

(c)40% (d)50% (e)60% (f)80%. In all the cases, the solid line represents averaged 

density of states while the dashed and the dotted line stand for Co and Fe partial 

density of states respectively. The vertical dashed lines are the Fermi levels. 
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0.1 0.179 0.136 

0.2 0.185 0.139 

0.3 0.190 0.140 

0.4 0.194 0.142 

0.5 0.196 0.142 

0.6 0.199 0.142 

0.8 0.201 0.138 

Table 6.1: Local exchange splitting 

centration of Co 

values (in Ryd) in CoxFel_x with varying con- 

electron number variation (Figure 6.2 (c)). 

This is reflected in features of density of states (Figure 6.3) as well as variation of 

density of states of fermi level n(EF) (Figure 6.4 (a)). For majority spin states the 

filling of d band occurring at Fe sites is accompanied by a steady decrease of n(EE). 

This process is finished at x-0.3. Up to this, fermi level is pinned to the minimum 

of minority spin density of states (Figure 6.3 (a)- (b)). Increasing Co content which 

essentially means gradual filling, shifts fermi level to regions of low spin up density 

of states and above x=0.3 to increasing spin down density of states (Figure 6.3 (c)- 

(f)). Thus n(EE) for up spin (shown by up triangles in Figure 6.4 (a)) decreases 

while nEE) for down spin (shown by down triangles) increases continuously beyond 

x=0.3. As a result, average n(EF) (shown by squares) goes through a minimum 

around x=0.3. 

All these phenomena are a consequence of local charge neutrality, exchange and 

hybridisation. Since bcc Co is already a saturated ferromagnet, there is hardly 

any possibility to increase substantially, the number of majority spin electrons and 

thereby the local magnetic moment of Co. Because of small sp-density of states at 

fermi level (Figure 6.3) compared with d contribution, the transfer of minority spin 

d electrons to sp-states is expected to be very small. Thus, Co moment is almost 

independent of alloy concentration and the possible exchange splitting of Co d level 

remains almost constant throughout the con centration regime (Table 6.1). 
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Figure 6.4: (a) Density of states at the Fermi level (b) Inverse susceptibility (c) Spin 

Fluctuation temperature and (d) Curie Temperature as a function of the concen- 

tration of Co in CoFe alloys. In (d) the solid line and the filled circles represent 

the variation of Curie temperature (To) in kelvin calculated using MW model vs 

Co concentration in Co=Fel_=. The diamonds stand for the values of Stoner Curie 

temperature (To s) in kelvin. 
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On the other hand, the weak ferromagnetism of Fe gives rise to the possibility 

of filling approximately 0.3 majority spin holes with minority spin electrons. Thus, 

local Fe moment increases as a result of increase in local exchange splitting (Table 

6.1). Hence, in spite of being nearest neighbours in the periodic table the exchange 

makes their behaviour so different. 

The role of hybridisation influencing the local magnetic properties can be ex- 

plained in terms of BCT model (Richter (1987)). As is evident from the density 

of states, the disorder in the minority spin band is more prominent which is also 

realised quantitatively from ~ variation. While 5 t varies from 40 mRy from Fe-rich 

side to 6 mRy in Co-rich side, 55 remains _~ 0.8 Ry for the whole range of concen- 

trations. According to BCT idea, different positions of atomic dS-levels of Fe and 

Co cause bonding charge transfer (BCT) in the minority spin band. An inspection 

of densities of states at various concentrations (Figure 6.3) shows that the bonding 

part of spin-up density of states has a larger Co weight whereas Fe dominates the 

anti-bonding part. A transition of minority spin electrons from Fe to Co occurs. To 

maintain local charge neutrality, mainly Co minority spin electrons are transferred 

to Fe majority band causing an increase of exchange splittingand magnetic satura- 

tion. As a result, a net electron redistribution from Fe 1" to Fe 5 state occurs only to 

increase Fe moment. 

So, to conclude, the magnetisation behavior of CoFe is characterised on the Fe- 

tich side by the magnetic saturation due to hybridisation whereas the Co- rich side 

is determined simply by filling of minority band. 

Figure 6.4 (b)-(d) respectively show the variation of inverse susceptibility, spin 

fluctuation temperature and Curie temperature calculated using MW model. The 

variation of inverse susceptibility is exactly reverse in nature to that of n(EF). This 

is due to the fact that inverse susceptibility is dependent on n(EF) -1 only as stoner 

parameter is a constant quantity. The variation of spin fluctuation temperature 

follows the same nature as of magnetisation and inverse susceptibility which are alike 

and this nature is reflected in Curie temperature because though in the calculations 

of Curie temperature Stoner Curie temperature was also involved. The diamonds in 

Figure 6.4 (d) represent the results of Stoner Curie temperature (TS). Apart from 

much larger values the nature of variation is also non-linear. This is due to the 



Chapter 6. Electronic structure and magnetism in disordered bcc Fe alloys 104 

c- 
O 

c- 

E 
i 

c- 
O 
rn 
v 

c- 

E 
O 
E 
O . m  

C 

2 . 5  ~- 

0.5 

-1.5 

-3.5 
0.05 

z~ 

0.10 0.15 

A 

0.20 

Concentration of Mn 

Figure 6.5: Partial and averaged magnetic moments (in Bohr-magneton/atom) vs. 

concentration of Mn for Mn=Fel_~ alloy. The solid line with up triangles represents 

calculated averaged values, the solid line with filled circles represents calculated Fe 

moments, the solid line with filled squares represents calculated Mn moments. The 

open up triangles are the experimental values of average moments. 

fact that Tc s measures the temperature at which the paramagnetic state becomes 

unstable rather than the magnetic transition temperature. 

Figure 6.5 shows the variation of average and local magnetisation in Mn=Fe1_= 

alloys with Mn concentration.The filled triangles stand for average value while the 

filled circles and filled squares represent Fe and Mn local moments respectively. 

Unfortunately, enough experimental data is not available in this region to support 

our results. The experimental results so far available (shown by open triangles) 

(Fisher (1995)) agree well with our results. Our results also agree to a reasonable 
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extent with the calculations based on Hartree-Fock-CPA (Hasegawa and Kanamori 

(1972)) qualitatively but the variation of Mn local moment doesn't agree qualita- 

tively with KKR-CPA results (Kulikov and Demangeat (1997)). In our case the 

Mn local moment linearly decreases with increasing Mn concentration, a feature 

obtained in Hartree-Fock-CPA calculations, too but the KKR-CPA results predict 

opposite trend for Mn moment. The Fe moment weakly increases and the average 

moment decreases with the Mn concentration, which is in qualitative agreement 

with the experimental Slater-Pauling curve (Fisher (1995)). 

These variations can be explained once again using band filling (Figure 6.6) and 

density of states (Figure 6.7) results. Figure 6.6 (b) shows an almost constantly 

filled Fe up and down bands across the concentration regime thereby supporting the 

weak variation in Fe local moment. In case of Mn, the filling accommodates more 

number of electrons in the minority band (Figure 6.6 (c)). As a result, the minority 

band of the alloy gets gradually filled up while a loss of electrons from majority 

bands occur (Figure 6.6 (a)). 

This feature is manifested in density of states as well as in variation of n(EF) 

(Figure 6.8 (a)). For majority spin states the filling of majority band at Fe site 

reduces n(Er) for the corresponding band while increasing Mn content shifts fermi 

level to regions of low spin up density of states and high spin down density of states 

because of gradual filling of minority electrons. 

Once again, these phenomena can be explained on the basis of interplay of local 

charge neutrality, hybridisation and magnetic exchange. Unlike Co, Mn d level 

exchange splitting varies quite considerably of the order of 30 mRy due to gradual 

filling of minority band and de-populating of majority band. As a result, Mn local 

moment decreases as one goes to Mn rich region. In Fe, since both the bands are 

nearly filled and a very weak variation of number of local electrons is observed the 

local exchange splitting varies of the.order of 14 tory  only (Table 6.2). Hence Fe 

local moment increases, though quite weakly compared to Mn. 

The role of hybridisation and charge re-distribution can be addressed as follows. 

A close look at density of states reveals that unlike FeCo, the disorder is appreciable 

in both the bands. For the majority band, 5 increases upto 50 toRy while 5 ~ increases 

around 8 mRy only. As Mn concentration is increased, the bonding part of spin-up 
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Figure 6.7: Spin projected partial and averaged densities of states/atom of MnxFel_~ 
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(c)15% (d)20% , In all the cases, the solid line represents averaged density of states 

while the dashed and the dotted line stand for Mn and Fe partial density of states 

respectively. 

0.05 0.177 -0.170 

0.1, 0.183 -0.187 

0.15 0.188 -0.197 

0.2 0.191 -0.202 

Table 6.2: Local exchange splitting values (in Ryd) in MnxFel_= with varying con- 

centration of Mn 
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Figure 6.8: (a) represents density of states at fermi level for both spins as well as 

the averaged values vs. concentration of Mn in Mn=Fet_= alloy. The up and down 

triangles stand for values of up and down spins respectively while the squares stand 

for averaged values. (b) represents averaged inverse spin susceptibilities (2#~/X in 

Ryd-atom vs. concentration of Mn in Mn=Fel_= alloy. The circles represent the 

calculated values. (c) represents variation of spin fluctuation temperature ( T s F )  in 

kelvin vs concentration of Mn in Mn=Fel_= (d) the solid line and the filled circles 

represent the variation of Curie temperature (Tc) in kelvin calculated using MW 

model vs Mn concentration in Mn=Fel_=. The diamonds stand for the values of 

Stoner Curie temperature (T s) in kelvin. 
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density of states is dominated by Fe while the anti-bonding part is dominated by 

Mn. The reverse situation is observed for spin down density of states. As a result, 

majority spins from Mn migrate to Fe and minority spins from Fe migrate to Mn. 

Thus an increase in Fe local moment is observed.Finally a transition of electrons 

from Mn t to Mn ~ state occurs reducing the Mn moment gradually. 

Figure 6.8 (b)- (d) respectively show the results on inverse susceptibility, spin 

fluctuation temperature and To. The inverse susceptibility shows a non-linear be- 

haviour and as a result unlike FeCo, we observe a variation of spin fluctuation 

temperature exactly opposite to that of magnetic moment. But, once again like 

FeCo, Tc reflects the behaviour of spin fluctuation temperature though T s (shown 

by filled circles in Figure 6.8 (d)) behaves in a opposite way. These discrepancies 

are due to limitations of T s itself which has been discussed in FeCo case. 

Figure 6.9 shows the concentration dependence of local and average magnetic 

moments in Cr~Fel_x alloy. The solid up triangles represent the calculated average 

values while the solid circles and solid squares denote the Fe and Cr local moments 

respectively. Our average magnetisation results agree well with the experimental 

values (shown by open up triangles) (Ling (1995)) and other theoretical results 

(Kulikov and Demangeat (1997), Butler (1995), Hasegawa and Kanamori (1972)). 

In fact, for higher Cr concentrations the experimental points almost fall on the 

theoretical curve establishing good agreement. In case of local moments, our results 

for Fe agree considerably well with available experimental (Butler (1995)) results but 

there is quantitative difference in Cr moment values with those of earlier calculations 

(Kulikov and Demangeat (1997), Dedrichs (1991)). In our case, we obtain a larger 

negative value of Cr moment which though increases rapidly in the Cr-rich region 

but never changes its sign which has been observed in earlier theoretical calculations 

around x-0.7. However, this slight discrepancy doesn't affect the average properties 

at all as is seen from the quantitative agreement with the experiments. Even the 

qualitative nature of variation of local as well as average moments is well reproduced. 

As is seen from the figure, Fe moment remains almost constant upto around x=0.4 

and then it decreases in the Cr-rich side but the nature of variation is pretty weak. 

The Cr moment on the other hand increases rapidly as Cr content is increased 

making the average value to drop down very fast and approaching zero in accordance 
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with the established observation that the average moment collapses around x=0.8 

due to transition from ferromagnetic to anti-ferromagnetic state. 

Once again, we take recourse to the density of states (Figure 6.11) and variation 

of local and average number of electrons as number of valence electrons is decreased 

(Fe-rich to Cr-rich side) (Figure 6.10) to explain these behaviours. A thorough 

inspection of density of sta~es for various concentrations show that  EF is positioned 

in a valley between the bonding-antibonding minority spin density of states. This 

feature explains the reason for linear variation of average moment because as we 

keep on increasing Fe content electrons are added to the majority spin states without 

much affecting minority spins. This feature is very clear in Figure 6.10 (a). The 

weak variation of Fe magnetic moment can also be explained likewise. The partial 

Fe density of states for both spins show little variation across the whole range of 

concentrations whereas the Cr minority density of states vary appreciably as we 

scan through the concentration regime. This is understandable if one looks into the 

variation of majority and minority electrons at each site. In case of Fe (Figure 6.10 

(b)), both the majority and minority bands are almost completely filled while in case 

of Cr (Figure 6.10 (c)), the majority band accommodates more and more electrons 

as Cr-content is increased while the minority band looses and eventually they vary 

in such a way that at a certain critical concentration there will be more number of 

electrons in the majority band. Due to this behaviour of Cr, the average number 

of up electrons decrease (Figure 6.10 (a)) rapidly in contrast to almost constantly 

filled minority band in such a way that around x=0.8, the number of electrons in 

the majority band will be same as that  of minority one establishing a collapse of 

magnetic moment when ferro-antiferro transition will take place. 

The n(Ef )  variation supports this (Figure 6.12 (a)). Initially the fermi level is 

situated near the d-level peak in the majority band but as the Cr content is increased 

and majority band starts loosing electrons fermi level starts moving away from high 

density of states though initially in the Fe-rich region due to increase in Fe majority 

band electrons upto x=0.4 n(EF) had a weak rise. But as we step into Cr-rich 

region this effect is completely washed out. On the other hand since minority band 

is almost filled there is almost no variation in n(EF) *. As a result, the average n(EF) 

has a maxima around x=0.4. 
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25  0 . 1 8 2 - 0 0 8 0  

0.4 0 .179-0.059 

0.5 0 .176-0.047 

0.6 0.171 -0.035 

0.7 0.163 -0.024 

.75 0.158 -0.020 

0.8 0.154 -0.016 

(in Ryd) in CrxFel-x with varying con- Table 6.3: Local exchange splitting values 

centration of Cr 

We now look for investigating the role of hybridisation, exchange etc and the 

type of charge distribution within the constraint of local charge neutrality. In Cr, 

the local exchange splitting varies more strongly than Mn and also in a opposite 

way. In case of Mn, exchange splitting decreased towards Mn-rich region whereas 

in this case, it increases as Cr content is increased (Table 6.3). The variation in the 

local exchange splitting for Cr varies of the order of 64 mRy from a Fe-rich to a 

Cr-rich region. This is due to the rapid de-filling of Cr minority band. In Fe, since 

both the bands are nearly filled, the local exchange splitting does not vary as much 

like that of Cr. Nevertheless, unlike Mn, it decreases and the variation is of the 

order of 28 mRy, explaining the decrease of Fe moment. 

The charge-redistribution procedure in this case is quite different. Like FeCo, 

here the disorder in minority bands is stronger as is seen from the 5 ~ values. 5 ~ 

varies from 9 mRy to 2 mRy from Fe-rich to Cr-rich side while 5 t remains around a 

value of-0.15 Ry. This stronger disorder in minority bands indicate a localization 

of majority electrons. As is seen from the density of states (Figure 6.11) both the 

bonding and anti-bonding part of spin down density of states is dominated by Cr. In 

case of majority band the bonding part is dominated by Fe and anti-bonding by Cr. 

Alongwith this the nature of variation of number of electrons for both spins at both 

the constituents (Figure 6.10) suggest that in this case, unlike the previous two, the 

electron redistribution occurs mainly between Cr 1" and Cr * states. Electrons from 
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Cr minority band migrate to Cr majority band explaining the rapid increase of Cr 

moment. 

Figure 6.12 (b) shows the variation of inverse spin susceptibility of the system 

with increasing Cr content. Since n(EF) has a maxima around x-0.4, this curve 

shows a minima around the same region. However, in the case of spin fluctuation 

temperature variation (Figure 6.12 (c)) there is no signature of this nature because 

the effect of magnetic moment variation is much stronger across the concentration 

rcgion and hence the variation of Spin fluctuation temperature reflects the nature 

of' variation of magnetic moment only. As is seen in the previous two systems, the 

MW Curie temperature too has a similar nature of variation (shown by solid line in 

Figure 6.12 (d)) while T~ values are much higher. 

6.5 Conc lus ions  

We have studied the magnetism in bcc based Fe alloys where the three constituents 

belong to the same row of the periodic table and consecutive nearest neighbours of 

Fe. We have restricted ourselves to the ferromagnetic regions of these alloys only. 

Our study reveals quite different natures of electronic redistributions among the 

constituents as we go along from Co to Cr producing different nature of variation 

of magnetisation, Curie temperature,spin susceptibility etc. We have shown the 

dominant role of hybridisation and magnetic exchange under the constraint of local 

charge neutrality to explain successfully the variations in magnetic properties of the 

alloys of nearest neighbours in periodic table. 



Chapter 7 

Effect of short range order on electronic and 

magnetic  properties of disordered Co based alloys 

7.1 In troduct ion  

The magnetic and chemical interactions in solid solutions, their interdependence and 

the role they play in determining the electronic and magnetic properties of transition 

metal alloys have been the subject of extensive experimental investigation (Cadeville 

and Mors (1987)). Several phenomenological models based on statistical 

thermodynamic aspects of phase stability are available to describe the interplay 

between magnetism and spatial order (Sato et al (1959), Swalin (1962), Vonsovskii 

(1974), Hennion (1983), Bieber et el (!981), Bieber and Gautier (1981), Bieber and 

Gautier (1986)). 

Apart from this, there is one more approach of understanding the interplay be- 

tween magnetism and ordering in transition metal alloys which involves investigation 

of the influence of local environment on electronic and magnetic properties of these 

alloys. A considerable amount of liter, ature exists concerning the local (short-range) 

order in transition metal alloys obtained through measurements of X-ray or neutron 

diffuse scattering, nuclear magnetic resonance and MSssbauer spectroscopies (Mire- 

beau et al (1982), Pierron-Bohnes et al (1985), Mirebeau et al (1985), Pierron- 

1The contents of this chapter has been published in Ghosh, Basu Chaudhuri, Sanyal and Mook- 
erjee, Y. Magn. Magn. Mater. 234 100 (2001) 
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Bohnes et al (1982)). In order to explain the experimental results and describe 

the inhomogeneous character of magnetism in these alloys many phenomenologi- 

cal models (Jaccarino and Walker (1965), Marshall (1968), Hicks (1970)) as well as 

electronic structure calculations based on both zero and finite temperature models 

(Hasegawa and Kanamori (1971), Butler (1973), Jo and Miwa (1976), Jo (1976), 

Hasegawa (1979), Hamada (1979), Kakehashi (1982)) have been elaborated. The 

effect of local environment in disordered alloys can be described in terms of short- 

range order(SRO) because the degree of SRO determines the extent to which spa- 

tial correlations exist in these systems. This approach has been adopted by many 

workers in recent times in the framework of ab-initio electronic structure calcula- 

tions (Borici-Kuqo et al (1998), Lu et al (1997), Wolverton et al (1998), Abrikosov 

(1996)). 
The macroscopic state of SilO for a disordered binary alloy is characterized by 

Warren-Cowley SRO parameter (Cowley (1950)), which is given by 

pr AB 
i (7-I) OL r -- 

Y 

where the A atom is at the center of the r th shell, y denotes the macroscopic 

concentration of species B and p~B is the pair .probability of finding a B atom 

anywhere in the r ta shell around an A atom. 

In the above mentioned approach, the workers either calculated the SRO parame- 

ters for a certain degree of disorder using first principles techniques and investigated 

the effect on ordering behavior of the systems (Lu et al (1997), Wolverton et al 

(1998), Staunton (1994), Johnson (1994)) or extracted the SRO parameters from 

experiments and observed its effect on electronic structure and properties (Borici- 

Kuqo et al (1998), Abrikosov (1996)). 

In this chapter, we present the effect of SRO on the magnetic properties and 

the ordering behaviour of Co based alloys. For our investigations, we have chosen 

CoxPtl-x and C%Pdl_~ alloys. Both the systems have been studied extensively over 

the years. In recent times they have received special attention due to their potential- 

ity of being used as a recording medium in a new generation of storage devices. For 

these reasons lots of work on optical and magneto-optical characterization of these 
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systems are available in recent literatures (Uba (1998), Geerts (1994), Weller et al 

(1994)). Theoretical calculations include anisotropic electrical resistivity studies by 

Ebert et al (1996), investigation of electronic structure and magnetic properties of 

ordered CoPt alloys by Kashyap et al (1999), study of magnetism in disordered CoPt 

alloys by Ebert et al (1992) and calculation of ground state properties of CoPt by 

Shick et al (1996). But, the interesting problem of interrelations of magnetism and 

local ordering has failed to draw much attention. The interplay between these two 

phenomena is quite complicated which has been studied experimentally by Sanchez 

and Mors (1989). To our knowledge no such investigation has been done so 

far for CoPd. Hence,in this work we make an attempt to understand the influence 

of short-range order on magnetic and electronic properties in these systems from 

a first principles viewpoint. Our purpose is to understand and compare these iso- 

electronic systems with respect to their responses to degree of short range ordering. 

In particular, we look at the behaviour of partial and average magnetic moments, 

Curie temperatures and band energies with varying alloy compositions and degrees 

of SRO. 

7.2 Theore t i ca l  Deta i l s  

Our calculations are based on the generalized augmented space recursion (ASR) 

technique (Mookerjee and Prasad (1993), Saha et al (1994), Sanyal et al (1998)). 

The effective one electron Hamiltonian within the local spin density approximation 

(LSDA is constructed in the framework of the tight-binding linearized muffin tin 

orbitals (TB-LMTO) method (Andersen et al (1985)). The Hamiltonian is sparse 

and therefore suitable for the application of the recursion method of Haydock et al 

(1972) and Haydock (1982). The ASR allows us to calculate the configuration of 

the Green functions including short ranged ordering in the Hamiltonian parameters. 

It does so by augmenting the Hilbert space spanned by the tight-binding basis by 

the configuration space of the random Hamiltonian parameters. The configuration 

average is expressed exactly as a matrix element in the augmented space. Details 

of this methodology has been presented in the previous chapter. Here we shall 

quote the key results of generalized TBLMTO-ASR for short-ranged ordering. The 



Chapter 7. Effect of short range order on disordered Co based alloys 

augmented space Hamiltonian with short range order is written as 

120 
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R R 

+H4 E ETRn, | Z + ~H~ E PR,, | P~ | (Pg" - P~") + . . .  
R R' R" 

+ g~ ~ PR" | P~ | (T~"+ T~") + . . .  
Rtl 

+H6 E PR" | P~ | (T;~" + T~") + . . .  
R u 

+all2 E PR" | (T4~ + T~t) | (P~" - PY") + .. . .  
RU 

+H7 E PR" | (T~r + T~t ) | (T~r + T?t ) (7-2) 
RII 

where R" belongs to the set of nearest neighbours of the site labelled 1, at which 

the local density of states will be calculated. P ' s  and T's are the projection and 

transfer operators either in the space spanned by the tight-binding basis {IR)} or 

the configuration space associated with the sites R ,  {I J'R>, I SR)} as described by 

Biswas et al (1995). The different terms of the Hamiltonian are given below. 

H 1  

A(Z) 

B(Z) 

F(Z) 

= A(C/~x)A~ - (EA(1/A)A;~-  1) 

= B ( C / A ) A ~ -  EB(1 /A)Ax  

= F ( C / A ) A ~ -  EF(1/A)A~ 

= (~X~)-I/2SRR, ( ~ ) - 1 / 2  

= F ( C / ~ ) ~ [ ~ / ( 1  - ~ ) x ( x  + ~y)  + ~/(1 - ~ )y (y  + ~x)  - 1] 

= F(C/A)A~[y~/(1 - (~)(x + cey)/x + x\/(1 - c~)(y + cex)/y - 1] 

= F(CA)A,x[~(1 ce)y(x + c~y) - ~ ( 1 . -  oz)x(y + ~.x) 

"-- X Z A  "Jr" y Z  B 

= ( y -  ~)(zA - z~) 

= V'-~(ZA- ZB) (7-3) 

a is the nearest neighbour Warren-Cowley parameter described earlier. A labels 

the constituents. C's and A's are the potential parameters describing the atomic 
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scattering properties of the constituents and S is the screened structure constant 

describing the underlying lattice which is fcc in the present case. For convenience, 

all the angular momentum labels have been suppressed, with the understanding that 

all potential parameters are 9 x 9 matrices. First of all, we note that in absence 

of short-ranged order (oL = 0), the terms H~ to H~ disappear and the Hamiltonian 

reduces to the standard one described earlier (Biswas et al (1995)). 

The initial TB-LMTO potential parameters are obtained from suitable guess 

potentials as described in the article by Andersen and Jepsen (1984). In subsequent 

iterations the potentials parameters are obtained from the solution of the Kohn- 

Sham equation, 

h2 V2 V ~ } 
- 2 m  + - E r E)  = 0 (7-4) 

where, 

V ' ( r R )  = V  o(rR) + (7-5) 

here A refers to the species of atom sitting at R and a the spin component. The 

electronic position within the atomic sphere centered at R is given by rR -----r - -  R .  

The core potentials are obtained from atomic calculations and are available for most 

atoms. For the treatment of the Madelung potential, we follow the procedure sug- 

gested by Drchal et al (1994). We choose the atomic sphere radii of the components 

in such a way that they preserve the total volume on the average and the indi- 

vidual atomic spheres are almost charge neutral. This ensures that total charge is 

conserved, but each atomic sphere carries no excess charge. In doing so, we had 

to be careful so that the spheres do not overlap much to violate the atomic sphere 

approximation. 

The local magnetic moment, Curie temperature and the Spin-Fluctuation tem- 

peratures have been described in the earlier chapter. 



Chapter 7. Effect of short range order on disordered Co based alloys 122 

7.3 C o m p u t a t i o n a l  Detai ls  

For all the calculations, we have used a real space cluster of 400 atoms and an aug- 

mented space shell up to the sixth nearest neighbour from the starting state. Eight 

pairs of recursion coefficients were determined exactly and the continued fraction 

was appended with the analytic terminator of Luchini and Nex (1987). In the paper, 

Ghosh et al (1997) have shown the convergence of the related integrated quantities, 

like the Fermi energy, the band energy, the magnetic moments and the charge den- 

sities, within the augmented space recursion. The convergence tests suggested by 

the authors were carried out to prescribed accuracies. We noted that at least eight 

pairs of recursion coefficients were necessary to provide Fermi energies and magnetic 

moments to required accuracies. We have reduced the computational burden of the 

recursion in the full augmented space by using the local symmetries of the augmented 

space to reduce the effective rank of the invariant subspace in which the recursion 

is confined (Saha et al (1996)) and using the seed recursion methodology (Ghosh 

et al (1999)) with fifteen energy seed points uniformly across the spectrum. The 

exchange-correlation potential of Von Barth and Hedin has been used. s, p and d 

orbitals were used to construct the basis functions and scalar relativistic corrections 

were included. 

7.4 Resul ts  and Discuss ion 

We have performed total energy calculations for CoPd and CoPt alloys for several 

concentrations of Co to obtain the ground state lattice parameters. Energy conver- 

gence was set for 0.01 mRy. The results are shown in figure 7.1. It is seen that 

for both CoPd and CoPt, there is a deviation from Vegard's law values(shown by 

dashed lines) though the trends are same. In both the cases, equilibrium lattice 

parameters decrease with the increase in Co concentrations. Shick et al (1996) ob- 

tained the equilibrium lattice parameter for CosoPts0 to be 7.049 a.u. using fully 

relativistic TBLMTO-CPA in frozen core approximation. Both their value and our 

calculated value of 6.921 a.u. are less than the experimental lattice parameter of 

7.10 a.u. (Wijn and Landolt-Bornstein (1986)). This is not surprising as LSDA 
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Figure 7.1: Equilibrium lattice parameters (in a.u.) vs. concentration of Co for (top) 

CoPd (bottom) CoPt alloys. The circles represent the calculated values whereas the 

dashed lines denote Vegard's law values. 
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Figure 7.2: Partial and averaged magnetic moments (in Bohr-magnetons/atom) vs. 

concentration of Co in (a) CoPd (b) CoPt alloys. The full line is for disordered 

case and the dotted one for SRO state with ~=  -0.2. The symbols represent : 

filled up traingles, filled circles and filled down traingles are for Co partial moments, 

averaged moments and P d / P t  partial moments respectively. Diamonds represent 

the experimental values of average magnetic moment in fully disordered case. 

invariably overestimates bonding. 

Results for magnetic moments of CoxPdl_x are shown in figure 7.2(a) while 

that  of CoxPtl_~ are shown in figure 7.2(b). It is seen that  both Pd and Pt  sites 

also acquire some induced moments from Co. Local magnetic moments of Co go 

down with increasing Co concentration but the changes are not significant. This is 

observed in ordered alloys too (Kashyap et al (1999)). This is a signature of weak 

local environmental effects on electronic structure. According to the calculation of 

Shick et al , the averaged and partial moments of Co and Pt  in CosoPt50 are 1.066, 

1.787 and 0.345 #B respectively. We get the values of 1.049, 1.852 and 0.24 #s  for 
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the same while both of the values for averaged magnetic moments are close to the 

experimental value of 1.05 ~s (Wijn and Landolt-Bornstein (1986)). Theoretical 

results using other techniques are not available for CoxPdl-~ systems. But,our 

results for both the systems agree well with experiment (Wijn and Landolt-Bornstein 

(1986)). As expected the LSDA estimate of the exchange field and hence the local 

magnetic moment is always larger than experimental values. 

The value of Warren-Cowley SRO parameter for AxB v alloy is given by - (x /y)  < 

< 1 where ~=-(x /y)  implies full short:range ordering and a---1 implies complete 

segregation. In our case we have taken our ~= -0.2 which is valid for the whole 

range of concentrations. The results for magnetic moments of CoPd and CoPt 

systems have been shown in dashed lines of figures 7.2 (a) and (b) respectively. The 

results show that the effect of SRO included through the given value of c~ on average 

magnetic moment is pretty weak. The difference in values of partial moments in 

the SRO state and fully disordered state is not uniform across the concentration 

axis for both the systems though the average moment in the SRO state is always 

less than that of fully disordered state. In case of CoPd, there is a crossover of 

partial moment value of both Co and Pd at certain concentrations with respect to 

the disordered value. At around 35%, the Co partial moment in the SRO state 

becomes less than that of disordered phase and this trend follows for the higher 

concentrations of Co. For Pd, however, the change is observed at around 55% but 

the quantitative difference with disordered phase in case of Pd is almost negligible. 

Exactly the same trend is observed in case of CoPt systems. 

Results for MW and Stoner Curie temperatures for CoPd and CoPt are shown 

in figures 7.3 (a) and (b) respectively. MW Curie temperatures for both the systems 

are in good agreement with the experiments (Wijn and Landolt-Bornstein (1986)). 

On the other hand Stoner Curie temperatures are highly overestimated. This is 

not surprising since we should realize that Stoner Curie temperature measures the 

temperature at which the paramagnetic state becomes unstable rather than the 

magnetic transition temperature. This overestimation is much reduced in the MW 

model (Mohn and Wohlfarth (1987)) which combines two extreme theories- the 

single particle excitation and collective particle excitations. Again, the theoretical 

Curie temperatures are higher than experimental values due to the same reason as 
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Figure 7.3: Curie temperature (in Kelvin) vs. concentration of Co in (a) CoPd 

and (b) CoPt alloys, Panel(a): MW Curie temperature results. Full line represents 

fully disordered case. Dashed line represents SRO state characterized by c~=-0.2. 

Diamonds represent experimental points for fully disordered case. Panel(b): Stoner 

Curie temperature results. Full and dashed lines refer to the same results as in (a). 
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described in case of magnetic moments. 

The results for Curie temperatures in SRO state of CoPd and CoPt are shown in 

figures 7.3 (a) and (b) by dashed lines. The Stoner Curie temperatures for both the 

systems are almost unaffected by SRO. The influence in MW Curie temperatures 

is also less. Yet, there is a difference in behaviour (quantitatively) with respect to 

fully disordered state at around 50% for both the systems. Around 50% of Co, the 

difference in magnitude of Curie temperature of SRO state and disordered state 

changes from positive to negative value. 

Figure 7.4 shows the partial densities of states for equi-atomic CoPd and CoPt 

alloys with SRO parameter -1.0, 0.0 and 1.0. While going from the short-ranged 

ordering side (-1.0) to the segregation side (1.0) we find distinct changes in local 

DOS. The DOS for majority and minority electrons shift relative to each other and 

bring change in magnetic moments. For CoPd alloy, the average magnetic moment 

is increased from 0.96 #s /a tom to 1.24 #B/atom while going from a =  -1.0 to 1.0. 

The change is from 0.88 #s /a tom to 1.09 #B/atom in case of CoPt. 

To have a complete understanding of the ordering tendency and effect of local 

ordering on magnetism in these systems we now carry out calculations for the full 

range of a at different concentrations. Figures 7.5 show the panels containing results 

for magnetic moments, electronic band energies and MW Curie temperatures for 

Co20Pds0, C%0Pds0 and Cos0Pd20 respectively. It is observed that while at 20% 

concentration of Co, Co partial moment decreases towards the segregation side,it 

shows a reverse tendency at 50% and 80%. The Pd partial moment shows a rise 

toward the segregation side at 20~163 while at 50% and 80% it remains almost at 

a constant magnitude. To understand this behavioral difference of Co moment at 

different concentrations we present results of magnetic moment at 10% and 40% of 

Co in figures 7.6 (left) and (right) respectively. The results for 10% mimic that of 

20% but the 40% case almost follows, the higher concentration trends. This can be 

understood in the following way: As the system goes from ordering to the segregation 

side, more and more Co atoms club together to build up magnetic moment of Co 

but at lower concentrations (<40%) a Co atom finds itself in a completely non- 

magnetic Pd surrounding. Therefore the situation is like a magnetic impurity in 

a non-magnetic host which instead of building up rather subdues its moment as it 
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goes toward the segregation side. 

The middle panels containing the results for the band energies show that at 

20% the system shows a tendency towards segregation while at 50% and 80% the 

tendency is towards ordering. To locate the region of the transition, figure 7.6 can be 

investigated which presents results on band energy for 40% Co. It is seen that at this 

concentration the system shows tendency toward segregation which means that the 

ordering behavior of the system changes between 40% and 500/0 of Co concentration. 

The bottom panels show the variation of Curie temperature with SRO parameter. 

At 200/0 and 500/0 concentrations Curie temperatures are higher toward ordering side 

while the trend is opposite at 800/0. In other words, at 20% and 500/0 ferromagnetic 

phases are stable up to higher temperatures in the ordering side while at 80% they 

are stable up to higher temperatures in the segregation side. 

Figures 7.7 present the results for the same properties but for CoPt alloys. The 

nature of variation of the moments are exactly same as those of CoPd and hence can 

be explained using the same logic. The results for the band energies show that at 

20% and 50% of Co, the system shows the tendency towards ordering while at 800/0 it 

tends to segregate. Once again to locate the region of transition the bottom panels 

of figures 7.8 are referenced. Here, the change in ordering behavior is observed at 

60% of Co which indicates that unlike CoPd, this system has a tendency to segregate 

between 50% and 6070 of Co. From the bottom panels of figures 7.7, it is seen that 

at all concentrations, Curie temperature is higher at higher band energy sides. It is 

indicative of the possibility that the ferromagnetic phases are stable up to a lower 

temperature at the minimum energy state of this system. 

7.5 Conclus ions  

We have studied the effects of short range order on the magnetic and electronic prop- 

erties of the CoxPdl_x and CoxPtl_~ alloys using fully self consistent first principles 

techniques. Our results for completely disordered phases agree reasonably well with 

the experiments. The effect of SRO on magnetic moments, electronic band energies 

and Curie temperatures have been investigated in detail. CoPt shows a tendency to 

go to ordering state from clustering(segregation) state at around 60% of Co while 
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CoPd shows this tendency at around 40%, The response of Curie temperature to 

short-range ordering is linear in CoPt in the sense that at all concentrations it at- 

tains higher value at the energetically higher SRO states. For CoPd, the response 

is not that  linear. At 20% and 80% concentrations higher values are observed at 

energetically higher SRO states. 



Chapter 8 

Conc lus ion  

In this thesis we have used three different methodologies of electronic structure cal- 

culations : the tight-binding LMTO, the recursion method and the augmented space 

method. We have studied both the electronic and magnetic properties of a series 

of compounds and alloys. The aim was twofold : an in-depth understanding of the 

various methodologies available with us with their advantages and drawbacks ; and 

also to apply these to interesting systems of compounds and alloys. We have devel- 

oped now a computationally efficient TB-LMTO based augmented space recursion 

package which is self-consistent in the LDA sense, incorporating different exchange- 

correlation functionals and including the GGA corrections. With this package we 

can deal not only with homogeneously disordered systems, but also include effects 

of short-ranged order and local structural disorder due to large size mismatch be- 

tween the constituents. Charge transfer effects are effective and accurately taken 

into accouat. 

The drawbacks of our methodology are all those of the basic ingredients. 

Firstly, it has all the drawbacks of the LDA. Although metals are well described, 

semiconductor band gaps are severely underestimated. It is basically a ground 

state technique. Excited states 'are not described to any satisfactory detail. 

One way out will be to generalize our method to the GW technique. This is 

one of the aims of further research in our group. 

Secondly, it has some of the drawbacks of the second generation TB-LMTO. Our 

application is within the atomic sphere approximation (ASA). Within the 

135 
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recursion method, which requires a sparse, real space representation of the 

Hamiltonian, combined corrections has not been possible to be implemented. 

We are looking into the new third generation TB-LMTO as the basis of our 

representation. A fully LDA self-consistent version of this is still not available. 

Technical improvements of the recursion method needs incorporation of the dy- 

namical recursion ideas introduced by Haydock and co-workers. We intend to 

implement this in future. 

It is our intention to pursue further work in these lines for the future. 
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